Forest archipelagos: A natural model of metacommunity under the threat of fire

Marcel S. Coelho a, b, *, Frederico de Siqueira Neves c, Lucas Neves Perillo c, Leonor Patrícia Cerdeira Morellato b, G. Wilson Fernandes a

a Laboratory of Evolutionary Ecology and Biodiversity, CP 486, ICB/Federal University of Minas Gerais, 30161-970 Belo Horizonte, MG, Brazil
b UNESP – Universidade Estadual Paulista, Instituto de Biociências, Departamento de Botânica, Laboratório de Fenologia, 13506-900 Rio Claro, SP, Brazil
c Laboratory of Insect Ecology, CP 486, ICB/Federal University of Minas Gerais, 30161-970 Belo Horizonte, MG, Brazil

A R T I C L E I N F O

Article history:
Received 21 December 2016
Received in revised form 30 March 2017
Accepted 31 March 2017
Edited by Fernando A O Silveira
Available online 4 April 2017

1. Introduction

One of the most important precepts of the modern conservation biology is the synergism between the efforts to protect speciose ecosystems and the ecological processes responsible for maintaining important environmental services (Kareiva and Marvier, 2012). Although the Brazilian vegetations are well studied, a unique ecosystem has received little attention by the scientific community and policy makers. Locally called Capões de Mata – hereafter – Atlantic forest islands, or simply forest islands – the natural islands of forests on the open grassland matrix of Espinhaço mountain range are examples of an ecosystem with relevant biodiversity associated to the protection of headwaters. The headwaters under forest islands feed important Brazilian river basins. The ecological regime – e.g. ombrophilous or semi-deciduous – dynamic of genesis and expansion, the existence of meta-community processes, and which ecoregions plays a major influence on its structure and composition – if Atlantic Rainforest or Cerrado (i.e., Brazilian savanna) – have only recently started to be deeply discussed (Coelho et al., 2016).

** This article is part of a special issue entitled Plant life in campo rupestre: new lessons from an ancient biodiversity hotspot published at the journal FLORA 238C.
* Corresponding author at: UNESP – Universidade Estadual Paulista, Instituto de Biociências, Departamento de Botânica, Laboratório de Fenologia, 13506-900 Rio Claro, SP, Brazil.
E-mail addresses: marcel.s.coelho@gmail.com (M.S. Coelho),
fred.neves@gmail.com (F. de Siqueira Neves), lucasnevesperillo@gmail.com (L.N. Perillo), patricia.morellato@gmail.com (L.P.C. Morellato),
gw.fernandes@gmail.com (G.W. Fernandes).

https://doi.org/10.1016/j.flora.2017.03.013
0367-2530/© 2017 Elsevier GmbH. All rights reserved.

Despite occurring on mountaintops and in a transition zone between two phytogeographic domains, they are predominantly under influence of the Atlantic Rainforest, a biodiversity hotspot (Myers et al., 2000). The Atlantic Forest Act (Federal Law 11.428/2006) recognizes ombrophilous and semi-deciduous forests as part of the Atlantic Forest domain. However, the scale size of the thematic map which the law is mostly based on does not allow the recognition of small forest disjunctions, as the Atlantic forest islands from Espinhaço range. Although these natural islands of tropical Atlantic forest have been mostly neglected, they are part of critically endangered hotspot of biodiversity and harbor several endangered species in need of study.

The forest islands of Espinhaço Range are surrounded by a matrix dominated by the rupestrian grasslands, locally called campo rupestre, a fire-prone vegetation mosaic adapted to burning and largely accept as a component of cerrado savanna domain (but see Silveira et al., 2016). While fire is an important ecological force driving the evolution of the dominant grasslands and scrublands of rupestrian grasslands and its component species (Alvarado et al., 2017), it can be a significant threat to the conservation of forest islands. This discrepancy poses a dilemma to fire management policy in a mosaic of fire-sensitive and fire-tolerant vegetation.

Considering the above scenario, here we address the ecology of natural forest islands and we (i) discuss the disjunction from the Atlantic Rainforest and their conservation status; (ii) argue that fire is a major threat to forest islands conservation, proposing possible management strategies, and (iii) highlight the relevance of the islands as suppliers of ecosystem services and as an unexploited natural model for testing ecological and evolutionary hypotheses (e.g., metacommunity dynamics).
2. Atlantic forest islands: location and landscape dynamics

The mountaintops of the Espinhaço Range are one of the few tropical areas that have remained stable during past climate changes, with emphasis on the latest considerable changes dating back to the Pleistocene period (Barbosa and Fernandes, 2016). It is likely that this ecological stability has been a driver of its high endemism (Hopper, 2009; Barbosa and Fernandes, 2016). The southern region of Espinhaço is influenced by the humid Atlantic tropical mass on its eastern face, as well as at high altitudes, leading to elevate rates of rainfall/humidity and stabilization in the form of Fronts of Stationary Nebulosity (Streher et al., 2017). The Atlantic tropical mass carries humidity from the Atlantic coast via jet streams, which fall as rain at high altitudes in the southern region of the Espinhaço Range, feeding specially the basins of the Doce river (to the east) and the São Francisco river (to the west). Thus, the Atlantic rainforest acts on the eastern face (windward), especially in the drainage zones, and maintains an influence over the higher altitudinal strata of the western face (leeward). As a result of the distinct climatic conditions, this regional landscape hosts elements of the Atlantic Forest (sensu Oliveira and Fontes, 2000) to the east and elements of the Cerrado to the west. Unlike the eastern face, which is mostly covered by semi-deciduous forest and, when close to the drainage and wet zones, cloud forests, the western face hosts a mosaic of vegetation physiognomies associated with the Cerrado. The higher altitudes – mountaintops and plateaus – represent transitional zones between the two phytogeographic domains (Cerrado and Atlantic Forest) and are dominated by rupestrian grasslands (Silveira et al., 2016), gallery forests and forest islands (see Coelho et al., 2016 for a review).

The forest islands of the Espinhaço are natural islands of forest with floristic compositions very similar to the semi-deciduous forests of the Atlantic Forest domain, but with a climate system associated with cloud forests (Meguro et al., 1996; Souza, 2009; Valente, 2009; Coelho et al., 2016). These forest islands are surrounded by rupestrian grasslands (old climatically-buffered infertile landscapes - OBCL) (Silveira et al., 2016), and established on well drained, deep and low acidic clay soil patches (Figs. 1 and 2). Therefore, the forest islands fit into environmentally suitable zones formed by quite specific soil and climate conditions (Fronts of Stationary Nebulosity), characteristics of edaphoclimatic vegetation (Rizzini, 1997). This forest ecosystem can establish in regions close to the mountains plateaus and ridges (~1200 m a.s.l.) that make up the Espinhaço Range, only under the combination of these specific environmental conditions (Coelho et al., 2016).

The landscape location and dynamics represent a rare natural opportunity to test hypotheses under relevant ecological frameworks as those related to the island biogeography and metacommunity theories (Leibold et al., 2004; Thompson, 2005). The forest archipelagos are composed by forest islands abruptly separated by a matrix of rupestrian grasslands, both comprising native ecosystems. The forest islands are of different sizes, shapes and distances to the nearest island or to the continuous forest (Fig. 2). This natural landscape feature bears similarities to other novel and fragmented ecosystems due to their high level of isolation and may bring some insights, for instance, into the effects of isolation on plant reproduction (Hagen et al., 2012). Important ecological lessons could be drawn and applied to the dominant landscape realities under conservation threat. The effects of landscape configuration on structuring communities could also be emphasized under the light of principles derived from niche theory and species-sorting models where species differ in their responses to distinct environmental conditions (Chase and Leibold, 2003). Both, dispersal processes and habitat conditions for species establishment are fundamental to understanding how communities are structured and their level of integration among islands (Jamonneau et al., 2011).

Therefore, how one ecosystem gives place to the other has been recently debated in the literature, especially in the vegetation of Páramos where is clear the transition between grasslands, at the top, and forest ecosystems, at the bottom of mountains (Rehm and Feeley, 2015). The drivers behind the maintenance of these ecozones could be better understood in natural laboratories such as the forest islands.

3. Ecosystem dynamics and environmental services

By forming archipelagos of forest amid grassland ecosystems, the forest islands host a phylogenetically and functionally distinct flora from the surrounding matrix, increasing local and regional species diversity, and likely, serving as refuge for the local fauna (Pereira et al., 2017). Despite the existence of many animal groups endemic to the rupestrian grassland (see Fernandes, 2016), as well as those endemic to the forest islands, evidence suggest the existence of a fauna flow between the two physiognomies (Pereira et al., 2017); especially from groups responsible for ecosystem functions, such as pollinators.

Preliminary data from long-term research project (Long term ecological research from rupestrian grasslands – CRSC) points out to the existence of a dynamic of insect metacommunities among forest islands (Pereira et al., 2017). The rupestrian grassland surrounding the forest islands seem to play a key role in maintaining diversity due to its permeability and resource supply. However, we do not know yet the function of forest islands as connectors/refuges as well as the isolation level considering the complex vegetation of rupestrian grasslands mosaic, and its importance in providing resources as flowers, fruits and leaves, places to rest and nest.
est islands are likely the nesting place and refuge for many animals, most of them – such as large bees and hummingbirds – are the most important long-distance pollinators of many species from the surrounded grasslands (Carstensen et al., 2014), and supporting the diversity of ecological interactions. For instance, hummingbirds pollinate up to 13% of species while large bees may account for 70% of pollination services in this ecosystem (Guerra et al., 2016) and may use the forest as shelter or nest. That proportion does not take into account the pollinators specialists of forest island species per se. Forest islands also host most of small mammals and several birds that also play a key role as seed dispersers (Guerra et al., 2016).

The permeability of the landscape can be altered by the plant community phenology (driven by cold winters and humid summers), as well as the action of frequent fire occurrence (Figueira et al., 2016; Alvarado et al., 2017; Streher et al., 2017). Besides their ecological importance, the forest islands establish into humid locations, with well-drained soils, associated with springs and streams (Coelho et al., 2016). The protection service of water intake environments is important, the springs responsible for feeding two of the most important Brazilian river basins, which are responsible for much of the water supply of some of the major Brazilian cities, such as Belo Horizonte (see Fig. 2, Silveira et al., 2016). Those basins are already environmentally compromised by human occupation, fishery overexploitation, exotic species introduction, constant sedimentation and damage on rivers’ headwaters (see Galindo-Leal and Câmara, 2005), including one of the largest Brazilian environmental disaster, a mud tsunami caused by a mining dam rupture that invaded Rio Doce basin on 2015 (Fernandes et al., 2016). According to the Brazilian forest code (Law 12.651/2012), all springs, no matter whether perennial or seasonal, as well as mountaintops must be permanently protected. The same can be applied for gallery forests. According to the scientific definition, forest islands must be under the very restrictive terms of use as described in the Atlantic Forest Act (Federal Law N° 11.428/2006) and treated as permanent protection area by the Brazilian forest code (Federal Law N° 12.651/2012). Hence, those laws could guarantee protection of a high number of endangered species – the sampling of the forest islands already recorded 18 plant species under some threaten categories (Martinelli and Moraes, 2013). Recent findings detected important differences in species composition between gallery and the forest islands (Coelho et al., 2016), and this diversity patterns have strong implications to conservation strategies deepening on a holistic view of the landscape complexity.

4. Fire: the main threat to conservation

Fire stands out as one of the most serious threat to forest islands. Fire has been an important evolutionary factor in savannas and grasslands, as its effects exert a strong environmental filter on forest cover. Many studies have demonstrated the role of fire in re-shaping the borders of savannas as well as functional plant adaptations driving from population to ecosystems (Hoffmann et al., 2003; Veldman et al., 2015; Dantas et al., 2016).

There are three main drivers that control the boundaries between the savannas and other physiognomies (e.g. wet forests):
The response of forests to climate change is a significant concern for conservation strategies and the protection of biodiversity. Forests are highly sensitive to climate fluctuations, which can lead to changes in tree species composition, growth patterns, and fire frequencies. These changes can alter ecosystem services, such as carbon sequestration and water regulation. Despite the significant challenges, research is ongoing to understand the impacts of climate change on forest ecosystems and to develop effective conservation strategies that can adapt to these changes.
cated to this unique and increasingly threatened ecosystem, or they will be liable for the environmental and economic costs related to its degradation.

Acknowledgements

This study was in partial fulfillment of the Ph.D. requirements of Coelho M.S and supported by a fellowship provided by CAPES. We thank the grants and logistic support of the CNPq, PELD CRSC, Reserva Vellozio, and FAPEMIG. MSC receives a PDJ fellowship and FSN, GWF and LPCM receive a Research Productivity fellowship from CNPq. LPCM contribution was benefited by São Paulo Research Foundation (FAPESP) and Microsoft Research Institute (grant #2013/50155-0) and FAPESP-VALE-FAPEMIG (grant #2010/51307-0). We would like to thank two anonymous reviewers and the editor F.A.O. Silveira for their suggestions and comments. We are also grateful to T.S.F. Silva for helping with the figure of drone. The drone was operated by BD Borges and flight mission and mosaic processing by LF Cancian all supported by FAPESP.

References

Coelho, M.S., Fernandes, C.W., Pacheco, P., Diniz, V., Meireles, A., Santos, R.M., Carvalho, F.C., Negreiros, D., 2016. Archipelago of montane forests surrounded

