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ABSTRACT

The mitochondrial DNA hypervariable segment I (HVS-I) is widely used in studies of human evolutionary
genetics, and therefore accurate estimates of mutation rates among nucleotide sites in this region are essential.
We have developed a novel maximum-likelihood methodology for estimating site-specific mutation rates from
partial phylogenetic information, such as haplogroup association. The resulting estimation problem is a
generalized linear model, with a nonstandard link function. We develop inference and bias correction tools for
our estimates and a hypothesis-testing approach for site independence. We demonstrate our methodology
using 16,609 HVS-I samples from the Genographic Project. Our results suggest that mutation rates among
nucleotide sites in HVS-I are highly variable. The 16,400–16,500 region exhibits significantly lower rates
compared to other regions, suggesting potential functional constraints. Several loci identified in the literature
as possible termination-associated sequences (TAS) do not yield statistically slower rates than the rest of HVS-I,
casting doubt on their functional importance. Our tests do not reject the null hypothesis of independent
mutation rates among nucleotide sites, supporting the use of site-independence assumption for analyzing
HVS-I. Potential extensions of our methodology include its application to estimation of mutation rates in other
genetic regions, like Y chromosome short tandem repeats.

IT has long been known that different regions in the
genome mutate at vastly different rates (Tamura

and Nei 1993). In particular, for the mitochondrial
DNA (mtDNA) two hypervariable segments (HVS) have

been identified and named HVS-I and HVS-II. Even
within these segments, the mutation rates of the various
sites are not fixed. Tamura and Nei (1993) showed that
there is strong statistical support for a Gamma ‘‘prior’’
distribution of mutation rates across the mtDNA control
region (which contains both HVS-I and HVS-II), with
a shape parameter a ¼ 0.1, implying many orders of
magnitude difference in rates between the fastest and
slowest mutating sites in these segments. Yang (1993,
1994) described methodologies for integrating this
Gamma prior into maximum-likelihood (ML) phylogeny
estimation.

Beyond the distribution of mutation rates, the next
step is to estimate site-specific mutation and/or sub-
stitution rates. These are potentially important for un-
derstanding functionality of various genetic regions, as
different functions are likely to impose selection or
sequence constraints and these can be inferred through
a good estimation methodology for site-specific rates. For
example, in mtDNA HVS-I several termination-associated
sequences (TAS) have been identified, on the basis of
sequence properties and conservation indexes. These are
suspected to play a central role in regulation between
replication termination and elongation of the mtDNA
(Falkenberg et al. 2007). If these suspicions are well
founded, we would expect strong structural constraints to
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apply to these sequences and hence expect them to be
subject to purifying selection. Although mutations might
occur at a similar rate to the rest of HVS-I, the resulting
variants would be selected against. In the presence of
selection, neutral theory assumptions made by practically
every estimation approach, including ours below, are
violated, but the reduced diversity due to selection is still
expected to lead to lower estimates. Thus, the task of
identifying (or verifying) the functionality of such regions
can be addressed in a hypothesis-testing framework for
the ‘‘null’’ hypothesis of neutrality (under which the
statistical model is valid and the rates should be ‘‘aver-
age’’) against the alternative of slower rates.

Numerous approaches have been developed for esti-
mating site-specific mutation rates. One flavor (e.g.,
Yang 1995; Siepel and Haussler 2005) is based on
analyzing the mutation rates as a Markov process and
hence identifying their sequential correlation. These
approaches are theoretically attractive, but computa-
tionally intensive, and are usually applied to small sets of
samples from different species, leading to a limited
ability for high-quality estimation of individual rates, if
the sequential correlation is not overwhelmingly high
(as is the case in mtDNA, see our results below). Another
family of methods is based on Bayesian or mixed-effects
inference (Yang and Wang 1995; Mayrose et al. 2004;
Mateiu and Rannala 2006), and these methods share
both the favorable statistical properties and the compu-
tational difficulties in handling a large amount of data
with the first group. The limitation on the amount of
data that can be used is obviously of critical importance
in determining the quality of estimates obtained. With a
small number of samples (dozens or less), it is simply
impossible to observe enough heterogeneity in the data
to derive accurate estimates, however sound and theo-
retically appealing the methods are.

A third group of methods is based on phylogenetic
reconstruction of potentially large samples of mtDNA
HVS-I sequences, followed by estimation of the rates by
counting the number of mutation events in each site.
For a survey of these approaches, see Bandelt et al.
(2006). As an example, we consider here the approach
that Bandelt et al. (2006) develop and two previous
approaches, by Excoffier and Yang (1999) and Meyer

and von Haeseler (2003). Both of the latter are ap-
proximate ML methods, attempting to reconstruct the
full distribution over possible tree topologies and esti-
mate parameters simultaneously. Because of the ex-
treme difficulty of this task, especially assuming rate
variation, even for moderately sized data sets (up to
several hundred samples), as used in these two articles,
they develop different approximation approaches.
Excoffier and Yang (1999) generate a limited set of
parsimonious candidate trees and investigate the ro-
bustness of their estimates to their choice of topology
from this set. Meyer and von Haeseler (2003), on the
other hand, alternate between estimating phylogeny

and mutation rates (where the phylogeny estimation
step assumes known, but potentially variable, mutation
rates). Bandelt et al. (2006) discuss these approaches
and explore their limitations and shortcomings, which
they consider to be critical. They therefore conclude
that the best approach for mutation rate estimation is
to manually construct a best tree (in their case, using
parsimony considerations) and estimate the mutation
rates by direct counting on this tree. They apply their
methodology to �800 samples.

Our approach is motivated by the current availability
of very large databases of HVS-I sequences, such as the
genographic public participation database described in
Behar et al. (2007), and by the realization that con-
struction of reliable phylogenies for such large samples
is a difficult, often impossible task. Instead we rely on
partial, highly reliable phylogenetic information, in our
case in the form of haplogroup (Hg) associations of
the mtDNA samples we use. We develop a formal ML
inference approach that allows us to find ML estimates
of the site-specific rates without reconstructing the
explicit phylogeny. We show that ML parameter esti-
mation in our model is a binomial regression with
complementary-log-log link function (a generalized
linear model) for estimating the site-specific mutation
rates and the size parameters for each Hg-specific
phylogenetic tree. The main advantage of our approach
is that it allows us to practically apply our method to
large data sets and eliminate the difficulties resulting
from uncertainty about the correct phylogeny. In our
case, we apply it to a data set of 16,609 samples, collected
in the Genographic Project (Behar et al. 2007) and
classified into Hg’s relying mostly on information from
the slowly mutating coding region of mtDNA. We
demonstrate the superiority of our estimates over the
results of Bandelt et al. (2006) and others.

In addition to the search for functionality mentioned
above, our methodology and the estimates it generates
can be used to improve phylogeny estimation algo-
rithms and sequence quality checking (Bandelt et al.
2002), as well as phylogenetic classification as we showed
in Behar et al. (2007). Our likelihood-based approach
also supports likelihood-ratio tests for the site indepen-
dence hypothesis underlying much of the inference
regularly performed on phylogenies. Below we perform
these tests and demonstrate that this independence
hypothesis is mostly reasonable for mtDNA HVS-I.

MATERIALS AND METHODS

Statistical estimation approach: Assume we observe a large
number of sequences of a nonrecombining DNA region.
These samples are all located on a phylogenetic tree. We are
not given their detailed phylogenetic relationship, but rather a
haplogroup view of that relationship. That is, the samples are
divided into groups that belong to the same haplogroup or
paragroup, together abbreviated here as Hg, where each Hg
can be thought of as a terminal subtree of the full phylogenetic
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tree, whose internal structure is not known. This situation
is illustrated in Figure 1 (a paragroup may technically be
a subforest of the full tree, but this has no bearing on our
methodology).

We assume we have aligned sequences and concentrate on
their differences through single-nucleotide polymorphisms
(SNPs). We ignore insertions and deletions in our analysis. We
do this because their mutation mechanisms are more difficult
and less well understood than SNPs and because insertions
and deletions in HVS-I appear to be unique events, not prone
to homoplasy or back mutations (Behar et al. 2007). We also
assume the following:

1. The haplogroup classification of all sequences is known
and accurate.

2. The SNPs in each site of the considered DNA region
are independent. It is important to differentiate this site-
independence hypothesis from the rate-independence hypothesis
tested and rejected by Yang (1995) and others. Our esti-
mation approach is purely frequentist and we assume
nothing about the ‘‘distribution’’ of the rates in our estima-
tion methodology. We go beyond this only for inference on
these estimates, as discussed in the next sections.

3. There is a global molecular clock; i.e., for every site con-
sidered, the rate of mutations per time unit is the same in
every part of the phylogenetic tree.

4. Every site has a fixed Poisson rate with which the mutations
occur. This assumption is exactly correct if we assume an
appropriately simple substitution model, in particular one
where the set of mutation rates is independent of the
current nucleotide (and consequently all four nucleotides
are equally likely to appear). This is true of the three sim-
plest substitution models commonly used, including the
Jukes–Cantor model (JC69) (Jukes and Cantor 1969), the
Kimura two-parameter model (K80) (Kimura 1980), and
the Kimura three-parameter model (K3ST) (Kimura 1981),
which allows for different rates of transitions and two dif-
ferent types of transversions.

Assumption 1 is critical for our analysis and cannot be vali-
dated. The methodology we develop will allow us to do hypoth-
esis testing to examine the validity of assumption 2. Assumption
3 can be relaxed as long as the clock changes uniformly for all
sites in HVS-I. Assumption 4 is important to make our model
formally correct, but slight violations of it (e.g., in substitution
models that allow slightly different marginal rates for the dif-
ferent nucleotides) should not affect the practical validity of our
methodology. Assumptions 2 and 4 clearly both depend on
assuming neutrality of HVS-I. If the region is functional, it is very
likely to create dependence between sites and violate standard
substitution model assumptions. The selection it creates also
clearly implies that our estimates would not correspond to true
mutation rates. However, as we discuss below, we can still use our
estimates in hypothesis tests for site independence and presence
of selection.

Given a rooted phylogenetic tree T, let t(T) be the total time
length of all branches on the tree. Subject to our assumptions,

the number of mutations on this tree in a site i in total time
t(T) is distributed Poisson(li � t(T)), where li is the rate
parameter for this site (which is the same in all Hg’s). In our
case, we are not given the full tree T but a set of K Hg’s,
representing terminal subtrees T1, . . . , TK whose lengths
t1, . . . , tK and internal structure are not known, with n samples
sorted into n1, . . . , nK samples in each Hg, respectively.

Assume first we were able to observe the number of
mutations mik in each site i in each Hg k; then the total log-
likelihood of the data would be

lðm; l; tÞ ¼
XI

i¼1

XK

k¼1

½logðli tkÞmik � li tk � � hðmÞ

¼
XI

i¼1

logðliÞ
XK

k¼1

mik 1
XK

k¼1

logðtkÞ
XI

i¼1

mik

�
X

i;k

li tk � hðmÞ; ð1Þ

where I is the number of sites in our genetic region and hðmÞ ¼PI ;K
i¼1;k¼1 logðmik !Þ is of no consequence for ML estimation

of the parameters ðl; tÞ. This ML estimation problem is a
straightforward Poisson regression with a (canonical) log link
function. In fact, it is easy to show that the decomposition
in Equation 1 implies that ML estimation of all li’s can be
done by simple counting (up to multiplication by an overall
constant factor).

Given Hg-level classification only, however, we do not ob-
serve the mik’s, but observe only the state of site i in all nk

samples (leaves) in Hg k. If not all of these are identical, we
know for certain that mik $ 1; i.e., site i has mutated at least
once somewhere on the phylogenetic tree describing our
haplogroup k samples. Without knowledge of the actual Hg-
specific phylogeny we cannot make any further conclusions
on mik in this case. If all of the nk samples have an identical
nucleotide in position i, we conclude that this site has not
mutated anywhere on the Hg’s phylogenetic tree; i.e., mik ¼ 0.
This conclusion is not guaranteed to be correct; however, we
can argue that with overwhelming probability it will be.

To demonstrate that our approach can properly capture
whether a mutation did occur in a specific site, consider a simple
phylogenetic tree like the one in Figure 2, where we assume a
mutation from red triangle to black circle has occurred on the top
right branch. The shapes at the bottom describe the states of the
leaves (observed samples), if no other mutations have occurred
at this site. Now assume we want all the leaves of the tree to have
the same nucleotide (all triangle or all circle) at this site. This
would clearly require that either the mutation reverted back
from circle to triangle on a cut of the subtree below the original
mutation (such as both branches marked with **) or the same
exact mutation (triangle to circle) simultaneously happened on
a set of branches completing a cut of the full tree (such as the
branch marked with 3). If none of these highly unlikely events
(requiring multiple ‘‘coordinated’’ mutations) occur, all leaves
would not have the same nucleotide at this site, given the shown
triangle to circle mutation.

Figure 1.—(A) Sche-
matic of the Hg view of a
phylogenetic tree and (B)
the full phylogenetic tree,
including the internal Hg
phylogenies, which we as-
sume we do not observe.
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We can illustrate the low probability of missing a mutation
in our approach, by comparing it to another probability, that
of not observing a mutation on a coalescent tree because it
has mutated back on the same link and thus is completely
unobservable. Assuming for simplicity that all polymorphisms
are binary, consider, for example, the two links marked with **
in Figure 2, and assume they both have length t. It is easily seen
that the probability that site i mutated and reverted on either
one of them is 2 � exp(�2lit)(lit)2/2 1 O((li � t)3). The
probability that the triangle to circle mutation reverted back
on both of them simultaneously is similarly exp(�2lit)(lit)2 1
O((li � t)4), i.e., slightly smaller. If we do not assume both links
have the same length, then the first probability is potentially
much bigger than the second. Thus, under reasonable assump-
tions that reversion back is most likely on binary splits, our
total chance of setting mik¼ 0 when the true value is mik . 0, is
on the same order of magnitude as the chance that the
coalescent tree contains mutations that reverted back on the
same link, which are inherently unobservable. One caveat
to keep in mind regarding our assertion that we likely know if
mik¼ 0 and its illustration, is that gross violations of our model
assumptions above (in particular, assumption 4) can make our
chances of missing mutations much higher. For example,
mutations creating a CpG dinucleotide may be likely to revert
quickly, even multiple times. This logic also applies to the
chance of multiple mutations occurring on the same link, of
course.

It should be clarified that by setting mik ¼ 0 we are not im-
plying that the site i has never mutated in this haplgroup k
anywhere in the world, but rather that it has not happened
on the phylogenetic (coalescent) tree of the nk samples we
observe in our data set. This is the tree whose total branch
length tk is one of the parameters we will be estimating.

Thus, we are assuming that while we cannot observe our
Poisson mutation counts mik, we can observe the binary vari-
ables bik ¼ Ifmik ¼ 0g. It is easy to verify that these variables are
distributed as bik�Bernoulli(exp(�li � tk)). If we now write the
partial likelihood of the observed data b only, we get

lðb; l; tÞ ¼
XI

i¼1

XK

k¼1

½�li tkbik 1 logð1� expð�li tkÞÞð1� bikÞ�

ð2Þ

and ML estimation of the parameters ðl; tÞ is now a binomial
regression with a complementary log–log (CLL)-link function.
In other words, the log of the negative log of the Bernoulli
success probability is linearly related to the (log) parameters:

logð�logðPðbik ¼ 1ÞÞÞ ¼ logðliÞ1 logðtkÞ: ð3Þ

This is still a generalized linear model (GLM) (McCullagh

and Nelder 1989), although a less standard one than the Pois-
son regression we could use to estimate the parameters from

the complete likelihood in Equation 1, if we could observe the
actual counts.

This procedure yields ML estimates of both the Hg coa-
lescent tree lengths t̂k ; k ¼ 1; . . . ;K (without information
about the actual phylogeny), and the site-specific instanta-
neous mutation rates l̂i ; i ¼ 1; . . . ; I . However, note that this
ML solution is defined only up to a multiplication of all the t̂k ’s
by a constant and division of all the l̂i ’s by the same constant
[the Bernoulli probabilities in (3) would not be affected].
Thus, to complete our estimation we need to resolve this re-
maining degree of freedom, for example, through calibration
of the total mutation rate

P
i li to an external accepted

number. Following Forster et al. (1996) we use 1/20,180
mutations per year in the limited HVS-I (16,090–16,395) as
our calibration number.

We summarize our modeling approach as follows:

1. We are given HVS-I sequences as data, and we assume that
these sequences are correctly classified into Hg’s and that
we get the full, correct HVS-I sequence for every sample.

2. We make assumptions 1–4 above, under which the likeli-
hood of the Hg-site-specific mutation counts mik is Poisson
(1).

3. Since we do not know the intra-Hg phylogeny of our sam-
ples, we cannot observe mik; however, we can (with over-
whelming probability) observe bik ¼ Ifmik ¼ 0g.

4. ML estimation of the site-specific mutation rates and Hg-
specific coalescent tree lengths is now a binomial regres-
sion with a CLL-link function.

Saturation and subsampling: Since our method relies on high-
quality Hg classification and then considers only the binary
bik’s, it can happen that a specific site i gives bik ¼ 0 "k; i.e., it is
polymorphic in all Hg’s. This is especially likely if some of the
li’s are much larger than others and if all Hg’s contain a large
number of samples. This is indeed the case for the geno-
graphic data set we use below for our experiments.

In the event that bik ¼ 0 "k the rate li is inestimable in our
methodology (that is, the maximum-likelihood estimate is not
finite). Even if bik 6¼ 0 for a small number of Hg’s, the estimate
of li may still suffer from stability problems. Ideally, we would
like a balance between Hg’s for which bik ¼ 1 and ones for
which bik ¼ 0, especially for our fastest mutating sites.

In this situation, we propose to counter this problem by
subsampling the large database multiple times and generating
a distribution of estimates generated by applying our estimation
approach to subsamples from the original larger sample. In
fact, we advocate using a bootstrap-based subsampling ap-
proach, known as the m out of n bootstrap (Bickel et al. 1997),
where m , n samples are sampled with return from the database
of size n. As Bickel et al. (1997) and others discuss, this is an
alternative bootstrap approach, which can lead to similar
insights to the standard bootstrap, and is superior in certain
situations when the standard (n out of n) bootstrap is not
effective for various reasons. Our setting is different from
theirs, in that not only the bootstrap-based inference, but also
the estimation itself, cannot be performed from the full data
set. Thus we are taking advantage of the m out of n bootstrap
for both estimation and inference.

In our approach, we empirically try different values of m,
giving rise to distributions of estimators of the mutation rates.
We evaluate them on the basis of their empirical spread
(variance) and their bias in estimating the true rates. We
discuss strategies for estimating these quantities in the next
section.

Statistical inference: The goal of inference is to interpret
and understand the performance of our estimation procedure
and validate the underlying assumptions. Our first inference
goal is to get an idea of the relationship between our estimates

Figure 2.—Demonstration of our reasoning, that we know
whether any mutations have occurred in a specific site.
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and the ‘‘real’’ values. The second is to test the hypothesis of
site independence underlying our method (and much of the
analysis of genetic information).

Bias and variance estimation based on a simulation–bootstrap
hybrid: A key question regarding our methodology is, How
reliable are our mutation rate estimates? Asymptotic theory
can be used to derive approximate confidence intervals for the
ML estimates we derive (see McCullagh and Nelder 1989 for
details). However, our modeling problem seems to be far from
‘‘asymptopia’’ and these intervals are not reliable. Also, CLL-
link binomial regression has inherent bias (McCullagh and
Nelder 1989, Chap. 15). We try, therefore, to investigate the
error in our estimates through a combination of resampling-
based and simulation approaches.

The parametric bootstrap (Efron and Tibshirani 1994)
allows us to investigate properties of our estimators through a
plug-in approach as follows: generate multiple data sets from
the model we estimated, reestimate the model from these data
sets, and investigate the consistent error (bias) and instability
(variance) of these estimators. The main problem with ap-
plication of the parametric bootstrap in our case is the implicit
assumption it makes, that our estimated model is ‘‘close’’ to the
true model and generates data with similar properties. This
assumption is clearly violated in our case in one respect: we are
able to estimate rates only for sites in HVS-I that are poly-
morphic in our data (292 of 553). However, the other 261 sites
clearly do not have probability 0 of mutating. Rather, it is the
luck of the draw that determines which portion of the slowly
mutating sites in HVS-I are polymorphic in our data. If we now
draw a parametric bootstrap sample, using our estimated rates,
we expect that many of the sites that are polymorphic in our
data would never mutate in this bootstrap sample, and the
number of polymorphic sites in every bootstrap sample would
be much smaller than the number in our original data set. It
should be noted that the nonparametric bootstrap does not
alleviate this problem and is even more problematic since
bootstrap sampling of the original samples would cause only
slight perturbations in the binary variables bik, which are the
real inputs to our modeling approach.

On the other hand, we have at our disposal information
about the ‘‘prior’’ distribution of the mutation rates in HVS-I.
Tamura and Nei (1993) originally showed that a Gamma
prior with shape parameter �a ¼ 0.1 is appropriate for the
distribution of mutation rates in the entire control region of
the mtDNA (which includes HVS-I, as well as HVS-II and their
intermediate region). Later authors, including Excoffier and
Yang (1999) and others, have suggested different values of a
may be more appropriate for HVS-I alone. We reestimate this
parameter from our Hg-level data, using a methodology in the
spirit of Tamura and Nei (1993), as follows.

As discussed above, we assume that the sites that are non-
polymorphic in all our Hg’s have never mutated. Furthermore,
sites that are polymorphic in one Hg only can reasonably be
assumed to have mutated only once, since the fact that they are
nonpolymorphic in all other Hg’s is indicative of their low
mutation rate. While this assumption may not be completely
accurate, it is ‘‘close enough’’ to obtain a rough estimate of a.
So, assuming we know how many sites have mutated 0, 1, and
.1 times in our complete data, we can now estimate a by a
‘‘method of moments’’ requiring that the empirical distribu-
tion matches the posterior probabilities for these three groups
under the negative binomial distribution. As we show below,
this method leads us to an estimate of a ¼ 0.25 for the shape
parameter based on our data.

For simulating our process and estimating its variance, we
can now simulate a set of ‘‘true’’ rates by drawing a sample of
size 553 from our hypothesized distribution Gamma(a, b),
where a¼ 0.25 is our estimate of the shape parameter and b is

the scale parameter, which we can tune, for example, by im-
posing the constraint

P
i2f16;090; ... ;16;395g li ¼ 1=20; 180 from

Forster et al. (1996) for calibration. We can then use these
553 rates to generate multiple data sets, for which we know the
correct rates, and then examine our algorithm’s performance
on these.

To generate simulated data (that is bik’s) that are like our
actual data, we also need the tk’s, i.e., the Hg tree sizes. For this
purpose, we can take advantage of the parametric bootstrap
and use our estimated tk’s to generate the simulation data sets
(we could then also quantify the bias our method suffers in
estimating these quantities, although this is not the main focus
of this article).

We can then apply our estimation methodology to multiple
samples drawn via this simulation–bootstrap hybrid method-
ology and obtain estimates of the bias inherent in this meth-
odology for data ‘‘like’’ the genetic data we have.

To summarize our bias estimation methodology, given an
estimation methodology E, and a data set D, it proceeds as
follows:

1. Apply E to D to obtain estimates l̂i ; i ¼ 1; . . . ; I and
t̂k ; k ¼ 1; . . . ;K . If E contains m of n bootstrap sampling
embedded in it, apply it to multiple bootstrap samples
according to this methodology.

2. Draw a sample of true rates li, i ¼ 1, . . . , I from G(a, b).
3. Repeat the following r times:

a. Create a new data set D* by drawing bik "i, k using our
simulation–bootstrap hybrid and Equation 3.

b. Apply our methodology E to D* to obtain estimates
li*; i ¼ 1; . . . ; I .

4. Calculate empirically the bias of these estimates compared
to the (known) li.

5. If E contains m of n bootstrap sampling, use bootstrap vari-
ance estimates. If not, use the simulation–bootstrap hybrid
repeated samples to estimate the variance.

6. Evaluate the overall relationship between li and bias and
variance, to generate a bias correction that is a function of
the magnitude of li.

Hypothesis testing about site independence: A fundamental
question about our methodology and many other methods
in phylogenetics is, To what extent are the molecular clock and
site independence assumptions we make realistic? In our ML
framework, we can actually test the site-independence assump-
tion statistically, against the alternative that mutation mecha-
nisms in one site may depend on the nucleotide value in
another site (or multiple sites, potentially).

Unfortunately, we cannot similarly test the lineage-indepen-
dence hypothesis, since change in the rate of the mutational clock
is indistinguishably confounded with the tree sizes tk.

Assume we want to test whether site r affects site s. Denote as
before by brk, bsk the indicator variables for sites r, s being non-
polymorphic in Hg k, respectively. Given a null hypothesis of
site independence between r, s, we can express the ‘‘alterna-
tive’’ that site s is more likely to be nonpolymorphic if site r is
nonpolymorphic, by adding a parameter expressing this
dependence to our formulation, as follows:

Pðbrk ¼ 1Þ ¼ expð�lr tkÞ ðas beforeÞ

Pðbsk ¼ 1 j brk ¼ 1Þ ¼ expð�ls tkÞ ðas beforeÞ

Pðbsk ¼ 1 j brk ¼ 0Þ ¼ expð�lslrs tkÞ ðpotential effect of site r Þ:

Under the null of no dependence, we have lrs ¼ 1 and we go
back to the formulation in Equation 2, while under the
alternative we can rewrite the likelihood as

Estimation of Site-Specific Mutation Rates 1515



lðb; l; tÞ

¼
XI

i¼1;i 6¼s

XK

k¼1

½�li � tk � bik 1 logð1� expð�li � tkÞÞð1� bikÞ�

1 ½�lsl
1�brk
rs � tk � bsk 1 logð1� expð�lsl

1�brk
rs � tkÞÞ

� ð1� bskÞ�; ð4Þ

where the last part in Equation 4 allows an extra parameter for
the cross-effect between the two sites. We can then test the
hypothesis H0: lrs¼ 1 via a generalized likelihood-ratio test with 1
d.f., comparing the ML solutions of Equation 2 and Equation 4.

When we apply this testing methodology for all pairs of sites,
we are performing a large number of tests, and we need to take
into account the issue of multiple comparisons when evaluat-
ing the outcome of our tests. For that purpose, we employ
the false discovery rate multiple-comparisons correction at
5%, which guarantees that the expected rate of falsely rejected
null hypotheses is at most 5% of all rejected hypotheses,
possibly less, under some types of dependence (Benjamini

and Hochberg 1995). This correction is slightly less conser-
vative than the standard Bonferroni correction (i.e., allows us
to reject more nulls), but similar in spirit.

The main advantage of our testing methodology is that it
aligns naturally with our modeling approach and specifically
that it does not require detailed phylogenetic reconstruction.
It should be noted, however, that it cannot expose every type of
nonindependence, and it may have limited power to expose
others. For example, if a specific combination of nucleotide
values in two sites has a strong affinity, and hence once one
site mutates into this state, and the other follows closely, our
method can identify this affinity only if this phenomenon has
happened in many of the Hg’s. A detailed phylogenetic
analysis could have more power to identify and characterize
these relationships.

Genographic mtDNA data: Each mitochondrial DNA sam-
ple submitted to the Genographic Project goes through the
standard classification process (Behar et al. 2007):

1. Sequencing of a number of coding-region markers: the
number has increased during the project and currently is
at 22.

2. Sequencing of the full extended HVS-I, defined as sites
16,024–16,569 of the samples aligned to revised Cambridge
Reference Sequence (rCRS).

3. On the basis of step 1, determine a Hg designation by SNPs
into one of 23 Hg’s: L0/1, L2, L3(xM, N), M, C, D, N, N1, A,
I, W, X, R, R9, R0, HV, H, V, J, T, U, K, B.

4. On the basis of steps 1 and 2, determine a haplogroup
designation into one of 87 Hg’s.

Table 2 of Behar et al. (2007) shows a summary of Hg
distribution for the 16,609 samples used in our analysis (the
reference database). Following assumption 1 in the Statistical
estimation approach section, we assume that the 23-Hg nomen-
clature labels are all correct. Since they are based on coding-
region SNPs and the careful classification protocol discussed
in Behar et al. (2007), this assumption is likely to be true. It is
less likely to be accurate for the 87-Hg nomenclature. How-
ever, as the 87-Hg version allows us to get much better resolu-
tion in our analysis, we also use it with the implicit assumption
that its classification is accurate and compare and discuss the
results from using both nomenclatures.

Supplemental Table 4 of Behar et al. (2007) contains all
the information required to calculate the bik values for the full
data set. We can see that some of the sites are completely
saturated for the 23-Hg nomenclature: 16,129, 16,189, and
16,519 are polymorphic in all 23 Hg’s and several other sites
are polymorphic in at least 20 Hg’s. Thus, to model the rates

reliably from these data we have to resort to our subsampling
methodology.

With the 87-Hg nomenclature, we clearly have a lot more
information about the mutation rates in our data, but a less
reliable Hg classification. Site 16,519 is polymorphic in the
most Hg’s: 65 of the 87. Thus, on the basis of these data
we could estimate the rates directly without resorting to sub-
sampling. The quality of estimates will be hampered by the
uncertainty about the correctness of the Hg labels.

One issue about the data that is highly relevant to our
analysis below is the problems in sequencing around the poly-
cytosine (poly-C) region created by the transition T16,189C
(relative to rCRS). This comes up in the dependence we iden-
tify below between sites 16,182 and 16,183 in our sequences,
which we suspect may be due to sequencing problems. Muta-
tions in these two sites always occur in concordance with the
adjacent polymorphism T16,189C that creates a poly-C stretch
that causes significant reading difficulties of this region, using
standard sequencing procedures (Figure 3). These difficulties
relate to a technical sequencing problem in which DNA strands
that differ in the number of cytosine repeats are assembled
and thus overlapping positions subsequent to T16,189C
are impossible to be appreciated since they are affected by
the shift created by the variable number of cytosines in the
different DNA strands. Therefore, the positions around the
poly-C stretch are usually removed from analysis (Behar et al.
2007). A different question relates to our ability to correctly
understand the number of adenosines that immediately pre-
cede the poly-C region (four in the rCRS). Figure 3 shows that
different numbers of adenosines are associated with the poly-C
stretch. Since most of the mutations we observe in 16,182 and
16,183 are transversions between adenosine and cytosine, it is
possible that the poly-C stretch creates a technical problem
here as well despite the unquestionable reads we get for these
positions. We successfully used fragment-length analysis tech-
niques, similar to those used to count the number of repeats
in short tandem repeats, to understand the real number of
cytosine repeats in various samples and found no clear evi-
dence for mistakes in the number of preceding adenosines
(data not shown). Nevertheless, caution mandates the ques-
tioning of the authenticity of our results for positions 16,182
and 16,183 and the possibility that the poly-C stretch plays a
role in creating artificial dependence.

Mutation rate estimation protocols: Considering the dis-
cussion above about the various Hg nomenclatures we have at
our disposal and the subsampling approaches, we implemented
four different protocols to estimate mutation rates from our data:
(1) subsampling-based estimates, using 100 repeated samples of
1000 sequences of our 16,609 total sequences and the 23-Hg
nomenclature; (2) subsampling-based estimates, using 100 re-
peated samples of 3000 sequences of our 16,609 total sequences
and the 23-Hg nomenclature; (3) subsampling-based estimates,
using 100 repeated samples of 4000 sequences of our 16,609 total
sequences and the 23-Hg nomenclature; and (4) estimates with
no subsampling, using the 87-Hg nomenclature.

We then used the glm function in R to calculate the ML
estimates of ðl; tÞ in Equation 2. See McCullagh and Nelder

(1989) for discussion of the theory of GLMs and Venablesand
Ripley (1994) for discussion of the glm function in S1, which
is the predecessor of R.

Running the binomial regression, and applying the con-
straint

P
i2f16;090;...;16;395g li ¼ 1=20; 180 from Forster et al.

(1996) for calibration, we obtain ML estimates in each setting
(in the subsampling protocols 1–3, we actually obtain a whole
distribution of estimates in each setting). We then apply our
bias correction (which turns out to be small, see below) and
use the empirical range of estimates from the bootstrap sam-
ples (for protocols 1–3) or the estimated variance from the
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simulation–bootstrap hybrid (for protocol 4) to calculate con-
fidence intervals.

Investigating mutation rates at TAS loci: Having high-
quality site-specific rate estimates facilitates investigation of
possible function in HVS-I. For example, HVS-I includes a
series of cis-acting TAS located at the 59 end of the control
region (Doda et al. 1981). These short DNA stretches of �15
nucleotides are believed to play an important role in the reg-
ulation between replication termination and elongation of the
mtDNA (Falkenberg et al. 2007). While this modeling process
is not fully resolved, in vivo footprints of protein-binding sites
overlapped with the TAS loci in mtDNA positions 16,158–
16,173 on the H strand and 16,305–16,318 and 16,331–16,353
on the L strand (Roberti et al. 1998). Previous studies identified
the TAS elements by comparing the mtDNA control region from
various mammals for conserved sequences, using a small number
of samples and seeking well-preserved regions (Sbisa et al. 1997).
Our estimation methodology combined with the large database
available for us allows us to critically examine the level of
conservation of these regions in modern humans. The validity
of our statistical model clearly depends on neutrality assumptions,
leading us to treat the preservation and functionality search
problem as a hypothesis-testing problem. Under the null of no
functional constraints, the mutation rates of the TAS regions
should be ‘‘no different on average’’ than the rest of HVS-I. If this
null is wrong, it invalidates the statistical model, and the estimates
we get are no longer valid mutation rate estimates. However, they

are clearly expected to be smaller than the true mutation rates in
these TAS regions (due to purifying selection). Hence we can still
formally use them to test the function hypothesis.

To test this hypothesis, we consider the four TAS loci iden-
tified by Roberti et al. (1998), in sites 16,097–16,107 (TAS E),
16,158–16,173 (TAS D), 16,305–16,318 (TAS C), and 16,331–
16,353 (TAS A and TAS B, which overlap). As mentioned
above, protein binding was detected in the latter three only.
We compare the mutation rates in these loci to the rest of HVS-
I, both as individual loci and for all four combined.

It should be clarified that our test (like all statistical tests)
does not have power against all possible alternatives. For ex-
ample, if there are some sites in TAS loci with a tendency
toward frequent mutations, and these mutations then get
gradually weeded out by selection, then our approach may fail
to identify this situation as ‘‘nonnull.’’ In that case, an alter-
native approach, which uses statistics related to the prevalence
of the rarer states in polymorphic sites, may be more effective.
As this is not a natural extension of our methodology, we leave
this approach as a topic for future research.

RESULTS

Table 1 (first four columns) gives an estimate and con-
fidence interval of mutation rates for the 48 quickest mu-
tating sites in HVS-I, from several different variants of

Figure 3.—The poly-C stretch.
Position 16,189 is highlighted and
five sequences are shown. A se-
quence identical to the rCRS in
the presented region is shown at
the top. Below it, four sequences
containing the T16,189C polymor-
phism are arranged to show one
to four adenosines preceding the
poly-C stretch. A typical chromato-
gram of the sequence after the
poly-C stretch is also demonstrated.
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our approach (the complete list is given in supplemen-
tal Table 1). We see that the fastest mutating site, 16,519,
is estimated to mutate once about every 200,000–500,000
years (depending on which of our estimates is used).
The 10th fastest site mutates �4 times slower, and the
slowest site in this list mutates �10 times slower. Thus,
for example, two individuals whose time to the most
recent common mtDNA ancestor (TMRCA) is 20,000
years have a probability of �exp(�40,000/350,000) ¼
0.87 to have the same nucleotide in site 16,519 due to
identity by descent. The total probability that they share
the same nucleotide is of course slightly higher, since
they may also have it due to homoplasy. Figure 4 shows
a graphical representation of the rate estimates as they
physically appear on HVS-I (using the estimates from
the 3000-samples version, as in the third column of Table
1). We can see the relatively uniform spread of the fastest
mutating sites, perhaps with a cluster around the poly-C
region in 16,184–16,189, and the relative dearth of fast
sites after 16,370, and especially in the range 16,400–
16,518. This dearth is also statistically significant: a
Wilcoxon rank sum test (Hollander and Wolfe 1973)
for the region 16,400–16,500 compared to the rest of
HVS-I gives a P-value of 1.4 3 10�9 for the null that these
two regions have the same distribution of mutation rate
estimates. Even allowing for the fact that we chose this
region by looking at the data, this result is still significant.

Bias-variance analysis: To quantify how biased our de-
rived estimates are, we employ the bootstrap–simulation
approach we described above. The first step is to decide
on a reasonable prior distribution for the mutation
rates. To accomplish that, we find the shape parameter a

that would be most consistent with the counts of sites
that have mutated 0, 1, and .1 times, as described above.
The resulting estimate is â ¼ 0:25.

We then draw a sample of mutation rates from this
prior and use the estimated t̂k’s from our method (sup-
plemental Table 2) to implement the bias estimation
methodology. Figure 5 shows the estimated bias as a
function of the true mutation rate for each one of our
four estimation settings. The points are means of the
estimates from 100 runs of our simulation–bootstrap
algorithm, and the lines are LOESS smoothed estimates
of the bias (Cleveland et al. 1992). These plots are
shown on the log scale; i.e., they represent the ratio of
the mutation rate to the bias in its estimates from the dif-
ferent methods. We can observe that the bias has some
interesting behavior and no clear consistent pattern
(although an obvious tendency to be negative and more
pronounced for lower mutation rates). However, en-
couragingly we can observe that in the region of higher
mutation rates that is of interest of us, the bias is almost
invariably ,0.2 in absolute value on the log scale and
therefore no bigger than �20% in our rate estimates.

Hypothesis testing: For hypothesis testing of site
independence, we utilized the 87-Hg nomenclature,
since the additional information in the more detailed

phylogeny is critical for our chances of identifying true
dependence. We applied the generalized likelihood-
ratio (GLR) test described above to all pairs of sites that
are polymorphic in at least 5 of the 87 Hgs—a total of
156 sites, giving us a total of 156 3 155 ¼ 24,180 tests.

Table 2 contains the 10 pairs of sites that gave the
lowest P-values for the GLR test and their false discovery
rate (FDR)-corrected P-values (Benjamini and Hochberg

1995) (although we used the more powerful FDR scheme,
the conclusions would have been the same from using the
simple Bonferroni correction). We observe that after the
FDR correction, we are left with only three cases where we
can reject the site-independence hypothesis at P ¼ 0.05.
We now analyze these cases in more detail.

The two-way relationship 16,182 � 16,183 is by far the
strongest nonindependence effect our methodology
identifies in our sequences. As we discussed above, it is
unclear to what extent sequencing ambiguity persists in
this position as a result of its proximity to the poly-C
region. However, since most of the mutations we ob-
serve in these two sites are between A � C, i.e., trans-
versions, it seems possible that the poly-C sequence plays
a role in creating artificial dependence.

The remaining significant effect is the pair 16,114 0
16,526. Examining our raw sequences, this significant
Hg-level relationship does not seem to follow from easily
detectable sequence-level relationships; i.e., we do not
observe a consistent tendency for mutations in sites
16,526 and 16,114 to coappear. We therefore lean
toward attributing this discovery to chance and not to
a real dependence.

So while our hypothesis-testing framework did iden-
tify three significant nonindependence relationships in
our data, further analysis of these suggests that uncer-
tainty about sequencing issues persists for two of them,
while the third is probably due to pure chance.

Our results are encouraging in that they support the
validity of site-independence assumptions in analyzing
mtDNA HVS-I data. Any dependence that exists is not
strong enough to discover with our testing methodol-
ogy, using our very large database and most detailed (87-
Hg) phylogenetic protocol.

Mutation rates at TAS loci: We compare the esti-
mated mutation rates in the four TAS loci to the rest
of HVS-I. We use the standard definition of HVS-I as
comprising nucleotides 16,024–16,365 only, given our
previous finding that the 16,400–16,500 region has
significantly slower mutation rate estimates. We em-
ploy two nonparametric tests to quantify the results of
these comparisons: the Wilcoxon rank sum test and the
Kolmogorov–Smirnov test (Hollander and Wolfe 1973).
Table 3 shows the results of our analysis, using the esti-
mates from the 87-Hg protocol. Values in italics indicate
significantly lower estimates in the given TAS at level P¼
0.05. As we can see, the TAS loci seem to have a tendency
toward slightly lower estimated rates than average,
but this is most evident in TAS E, which is the only
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one not showing evidence of protein binding (Roberti

et al. 1998). It is not exactly clear what the appropriate
multiple-comparison correction to the P-values of the
individual tests would be here. A conservative approach,
of correcting for the execution of 10 tests, would leave

none of our results significant. More relaxed multiple-
comparison correction approaches may conceivably
conclude that TAS E and/or the entire set of TAS loci
combined have a tendency for slightly lower mutation
rates than the rest of HVS-I.

TABLE 1

Mutation rate estimates (in mutations per million years) and 90% confidence intervals for the fastest sites in
HVS-I from some versions of our method and BANDELT et al. (2006)

Est. [90% C.I.]

Locus 1000 samples 3000 samples 4000 samples 87 Hg
Bandelt

et al. (2006)

16,051 0.54 [0.33–0.85] 0.5 [0.30–0.82] 0.54 [0.35–0.84] 0.55 [0.39–0.79] 0.67 [0.31–1.3]
16,086 0.35 [0.12–0.7] 0.49 [0.25–0.8] 0.55 [0.31–0.87] 0.81 [0.59–1.1] 0.29 [0.08–0.74]
16,092 0.56 [0.32–0.96] 0.57 [0.34–0.88] 0.54 [0.35–0.88] 0.54 [0.38–0.77] 0.57 [0.25–1.1]
16,093 1.6 [0.91–2.5] 1.7 [1.1–2.3] 1.8 [1.0–3.2] 2.8 [2.1–3.9] 3.2 [2.3–4.3]
16,111 0.64 [0.37–1.0] 0.58 [0.37–0.86] 0.64 [0.37–1.1] 0.7 [0.5–0.98] 0.71 [0.35–1.3]
16,126 0.52 [0.28–1] 0.68 [0.45–1] 0.66 [0.44–0.9] 0.53 [0.37–0.75] 0.43 [0.16–0.94]
16,129 1.9 [1.1–2.8] 1.8 [1.2–3] 1.7 [1.2–2.9] 1.3 [0.93–1.7] 1.8 [1.1–2.6]
16,145 0.56 [0.31–1.2] 0.61 [0.39–0.94] 0.64 [0.44–0.95] 0.71 [0.51–1] 0.67 [0.31–1.3]
16,148 0.34 [0.19–0.56] 0.32 [0.21–0.47] 0.3 [0.20–0.45] 0.36 [0.24–0.53] 0.38 [0.13–0.87]
16,172 1.8 [1.2–2.8] 1.6 [1.1–2.6] 1.5 [0.93–2.3] 1.2 [0.89–1.7] 0.86 [0.45–1.5]
16,182 0.64 [0.36–1.1] 0.68 [0.39–0.98] 0.64 [0.44–0.89] 0.67 [0.48–0.94] 0.095 [0.005–0.45]
16,183 1.8 [1.1–3] 1.9 [1.2–2.9] 1.8 [1.3–2.4] 1.2 [0.86–1.6] 0 [0–0.29]
16,184 0.21 [0.06–0.49] 0.32 [0.17–0.58] 0.35 [0.21–0.56] 0.55 [0.39–0.78] 0.095 [0.005–0.45]
16,189 2.5 [1.6–3.7] 2.4 [1.7–3.4] 2.2 [1.3–3.8] 2.5 [1.8–3.4] 2.2 [1.5–3.1]
16,192 1.1 [0.6–1.7] 0.94 [0.6–1.4] 0.88 [0.63–1.3] 1.0 [0.75–1.4] 1.4 [0.89–2.2]
16,209 0.41 [0.21–0.68] 0.43 [0.26–0.68] 0.46 [0.28–0.73] 0.48 [0.33–0.69] 0.43 [0.16–0.94]
16,213 0.26 [0.11–0.57] 0.32 [0.18–0.55] 0.34 [0.2–0.55] 0.28 [0.18–0.43] 0.52 [0.22–1.1]
16,218 0.28 [0.12–0.54] 0.35 [0.19–0.53] 0.36 [0.23–0.52] 0.47 [0.32–0.67] 0 [0–0.29]
16,223 0.46 [0.18–0.91] 0.57 [0.34–0.93] 0.64 [0.38–0.98] 0.64 [0.46–0.9] 0.86 [0.45–1.5]
16,234 0.52 [0.21–0.95] 0.68 [0.42–1.2] 0.68 [0.41–1.1] 0.72 [0.52–1] 0.43 [0.16–0.94]
16,239 0.36 [0.20–0.6] 0.35 [0.21–0.55] 0.32 [0.21–0.48] 0.43 [0.3–0.63] 0.19 [0.03–0.6]
16,249 0.5 [0.25–0.81] 0.54 [0.31–0.88] 0.54 [0.36–0.8] 0.49 [0.34–0.7] 0.38 [0.13–0.87]
16,256 0.54 [0.32–1] 0.64 [0.41–1.0] 0.62 [0.4–1.0] 0.88 [0.64–1.2] 0.86 [0.45–1.5]
16,260 0.21 [0.06–0.48] 0.28 [0.15–0.43] 0.26 [0.16–0.44] 0.47 [0.32–0.67] 0.19 [0.03–0.6]
16,261 0.65 [0.33–1.1] 0.64 [0.42–1.0] 0.6 [0.41–0.86] 0.58 [0.41–0.83] 1.0 [0.59–1.7]
16,265 0.45 [0.22–0.83] 0.44 [0.28–0.64] 0.44 [0.31–0.64] 0.57 [0.4–0.8] 0.48 [0.19–1]
16,266 0.34 [0.13–0.67] 0.5 [0.25–0.85] 0.5 [0.3–0.86] 0.74 [0.53–1.0] 0.38 [0.13–0.87]
16,270 0.48 [0.31–0.7] 0.32 [0.22–0.5] 0.29 [0.19–0.43] 0.23 [0.15–0.37] 0.24 [0.06–0.67]
16,274 0.7 [0.39–1.2] 0.81 [0.47–1.3] 0.81 [0.56–1.1] 1.4 [1.0–1.9] 0.76 [0.38–1.4]
16,278 1.1 [0.7–1.7] 0.93 [0.55–1.5] 0.86 [0.6–1.2] 1.0 [0.75–1.4] 1.1 [0.66–1.9]
16,290 0.17 [0.05–0.42] 0.3 [0.13–0.52] 0.31 [0.17–0.52] 0.42 [0.29–0.61] 0.38 [0.13–0.87]
16,291 0.65 [0.38–1.1] 0.66 [0.42–0.98] 0.68 [0.45–0.95] 0.8 [0.58–1.1] 1.0 [0.59–1.7]
16,292 0.42 [0.22–0.8] 0.43 [0.25–0.69] 0.40 [0.25–0.62] 0.47 [0.33–0.67] 0.67 [0.31–1.3]
16,293 0.31 [0.18–0.59] 0.31 [0.19–0.55] 0.29 [0.16–0.46] 0.44 [0.3–0.63] 0.76 [0.38–1.4]
16,294 0.74 [0.44–1.1] 0.72 [0.42–1.0] 0.75 [0.44–1.1] 0.7 [0.5–0.97] 0.29 [0.08–0.74]
16,295 0.32 [0.13–0.57] 0.36 [0.23–0.58] 0.33 [0.21–0.52] 0.35 [0.23–0.52] 0.48 [0.19–1]
16,298 0.41 [0.23–0.7] 0.36 [0.23–0.57] 0.32 [0.22–0.47] 0.25 [0.16–0.39] 0.57 [0.25–1.1]
16,304 0.49 [0.31–0.79] 0.4 [0.26–0.68] 0.4 [0.27–0.59] 0.41 [0.28–0.6] 0.57 [0.25–1.1]
16,311 2.3 [1.5–3.5] 2.4 [1.6–3.9] 2.6 [1.6–5.8] 2.6 [1.9–3.6] 2.8 [2–3.8]
16,319 0.8 [0.4–1.6] 0.81 [0.51–1.3] 0.82 [0.54–1.3] 0.62 [0.44–0.88] 0.48 [0.19–1]
16,320 0.53 [0.29–0.86] 0.43 [0.3–0.64] 0.40 [0.27–0.6] 0.42 [0.29–0.62] 0.8 [0.41–1.4]
16,325 0.66 [0.28–1.1] 0.65 [0.43–0.94] 0.6 [0.38–0.82] 0.63 [0.45–0.89] 0.33 [0.10–0.8]
16,355 0.41 [0.19–0.73] 0.45 [0.27–0.75] 0.46 [0.25–0.77] 0.6 [0.42–0.84] 0.38 [0.13–0.87]
16,362 2.4 [1.4–4.1] 2.4 [1.7–3.1] 2.2 [1.6–3.0] 2.3 [1.7–3.1] 1.8 [1.2–2.7]
16,390 0.49 [0.25–0.87] 0.54 [0.33–0.9] 0.52 [0.33–0.76] 0.68 [0.48–0.95]
16,399 0.38 [0.20–0.69] 0.39 [0.24–0.57] 0.41 [0.25–0.64] 0.57 [0.4–0.8]
16,519 3.6 [2.4–6.1] 2.9 [1.9–4.9] 3.0 [1.7–4.7] 4.4 [3.1–6.2]
16,527 0.31 [0.11–0.62] 0.36 [0.21–0.55] 0.32 [0.24–0.47] 0.45 [0.31–0.65]
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We conclude that, if these loci do contain some
patterns whose conservation is critical for replication
termination, these patterns are likely to be complex and
include dependencies that are not significantly reflected
at the individual-site level.

DISCUSSION

We discuss several issues related to the quality of our
methodology and our estimates and their usefulness.

Importance of rate estimation: The mutation dynam-
ics of the human genome in general and mtDNA in
particular have experienced a surge of interest in recent
years (Torroni et al. 2006). Many articles deal with the
real or apparent ‘‘slowdown’’ effect in the molecular clock
for older time periods (e.g., Ho et al. 2005). Since we share
Bandelt et al.’s (2006) opinion that there is no convinc-
ing evidence for a molecular clock slowdown (other than
saturation causing these apparent effects), we view this
issue as unrelated to our analysis in this article.

Reliable mutation rate estimates are clearly important
for several widely accepted reasons. Understanding
the function of various regions in the genome and the
mutual influence between different regions, which may
be caused by either a functional relation or a physical or
chemical one, is one of the key challenges of the field of
genomics and, indeed, one of the most important sci-
entific questions of our time (Hardison 2003; Hapmap

Consortium 2005). Creating a better understanding of
the mutation mechanisms and potential dependencies
in those is an important step in this process, as it may
help to separate nongenic areas that have function (and

are therefore preserved) from ones that do not and to
discover the relationships between regions within our
genome. Our investigation of the TAS loci and the
observation that they do not demonstrate the high
degree of preservation previously attributed to them is
an example of a function-related observation whose val-
idity is tied to the quality of rate estimates available. Our
testing (and mostly acceptance) of the site-independence
assumption also has potential function-related impli-
cations, as it suggests lack of significant interaction
between different loci in HVS-I.

Mutation rates can be used to improve phylogeny
estimation algorithms and sequence quality checking
(Bandelt et al. 2002). It should be clarified, however,
that these rates are not very useful for time estimation on
known phylogenies. As Rosset (2007) has shown, under
a simple substitution model like the one we assume here,
the individual rates are of no consequence for time
estimation, only their sum. This is a direct consequence
of the fact that the sum of independent Poisson random
variables is still Poisson distributed. Under more com-
plex models, the individual rates may have a minor
effect on time estimates.

We have also recently used our estimates reported
here to improve the accuracy of the mtDNA Hg clas-
sification protocol in the Genographic Project (Behar

et al. 2007).
An interesting aspect of our mutation rate estimation

methodology is the estimates we derive of tk, the total
length of the coalescent tree of the samples we have in
each Hg (it should be reiterated that this is not the
TMRCA of the Hg, but the sum of the lengths of all

Figure 4.—Graphical
representation of mutation
rates along HVS-I.
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branches in the coalescent tree). These can be used for
inference on the age and demographic history of the
Hg’s. Table 4 gives some estimates of tk, derived from our
calculations based on the 87-Hg protocol (the full list is
available in supplemental Table 2). Detailed discussion

of these results is beyond the scope of this article, but
we can clearly see the difference between Hg M* (255
samples, estimate of tk is �6 million years) and Hg V
(471 samples, estimate of tk is only 1.7 million years), im-
plying that our samples from M* are much more diverse

TABLE 2

Results of generalized likelihood-ratio tests for
site independence

Effect Raw P-value Corrected

16,182 0 16,183 7.7 3 10�12 ,0.0001
16,183 0 16,182 2.2 3 10�9 ,0.0001
16,114 0 16,526 0.0000012 0.03

16,212 0 16,153 0.000027 0.66
16,266 0 16,148 0.000033 0.8
16,304 0 16,163 0.000039 0.95
16,184 0 16,335 0.000045 1
16,104 0 16,111 0.000053 1
16,327 0 16,163 0.000068 1
16,526 0 16,114 0.00009 1
..
. ..

. ..
.

TABLE 3

Statistical analysis of mutation rate estimates in TAS loci,
compared to the rest of HVS-I

TAS site Positions
Wilcoxon

P-value
K–S

P-value

TAS E 16,097–16,107 0.020 0.013
TAS D 16,158–16,173 0.172 0.082
TAS C 16,305–16,318 0.464 0.693
TAS A 1 B 16,331–16,353 0.037 0.135

All combined 0.082 0.049

After multiple-comparisons correction, arguably none of
these results are significant (see text). Values in italics indicate
significantly lower estimates in the given TAS at level P¼ 0.05.
K–S, Kolmogorov–Smirnov.

Figure 5.—Smoothed bias estimation curves for our various estimation protocols, using our simulation–bootstrap hybrid. The
smoothing was done using LOESS (Cleveland et al. 1992).

Estimation of Site-Specific Mutation Rates 1521



than those from V, a difference that demonstrates the
older age of the polyphyletic Hg M* and its more
ancient expansion.

Haplogroup classification vs. detailed phylogeny:
Most of the approaches for estimating individual muta-
tion rates in HVS-I we mentioned above are based on a
reconstruction of the full phylogenetic tree through
a ML approach (Excoffier and Yang 1999), quartet
puzzling (Meyer and von Haeseler 2003), or maxi-
mum parsimony (Bandelt et al. 2006).

In our case, if we were able to obtain a full phylogeny
(like in Figure 1B), we would be able to observe the ac-
tual mik values (at least up to uncertainty about repeated
mutations on tree branches), use Equation 1 for mod-
eling, and most likely get better-quality results than our
modeling based on Equation 2. However, the funda-
mental idea behind our approach is that reliable Hg
classification on a tree whose general structure is known
(such as the human mtDNA tree) is a much simpler task
than identifying the complete phylogeny of a large set
of samples. Building detailed phylogenies for large
samples presents significant computational and, more
importantly, statistical difficulties. The resulting phylog-
enies may be highly underdetermined and uncertain
(Felsenstein 2003). Use of ML methodology like that
of Excoffier and Yang (1999) would also require pa-
rametric assumptions about the mutation rates.

For example, the data set we use here is composed of
16,609 HVS-I samples of mtDNA. The Hg classification
is primarily based on a set of coding-region SNPs and is
therefore very reliable. On the other hand, relying on
HVS-I to build detailed, reliable phylogenies within
Hg’s, with hundreds or even thousands of samples per
Hg, is an overwhelming task.

A more relevant question might be whether we would
gain from having more phylogenetic information, in
the form of more detailed SNP-based phylogeny.
The qualitative answer is that more detailed phylogeny
clearly leads to better estimates and to avoiding the
saturation problem that precludes us from using the
full data set at once. In our analysis we can see this by
considering Table 1 and Figure 6 below. The 87-Hg
nomenclature clearly leads to smaller C.I.’s and there-
fore apparently to better estimates than the 23-Hg

nomenclature. However, these estimates are not as
reliable due to the (unquantifiable) uncertainty in the
87-Hg classification based on HVS-I rules in addition to
coding-region SNPs.

Comparison to estimates from the literature: As men-
tioned in the Introduction, previous efforts to estimate
site-specific rates and dependencies in HVS-I include
several that are statistically appealing but use small
numbers of samples (Yang 1995; Yang and Wang 1995;
Nielsen 1997). More recent efforts were mostly based
on phylogenetic reconstruction and counting (Excoffier

and Yang 1999; Meyer and von Haeseler 2003;
Bandelt et al. 2006).

Of all these, the method of Bandelt et al. (2006) uses
by far the most data (873 samples, compared to our
16,609), with extensive manual work on phylogeny re-
construction minimizing the dependence on modeling
assumptions and approximations. We therefore com-
pare our estimates to those from Bandelt et al. (2006).
Since they used the limited definition of HVS-I as
16,051–16,365, we concentrate on the region that is
common to our study and theirs. As can be seen in Table
1, the estimates are similar in spirit. Since the estimates
given by Bandelt et al. (2006) are based on mutation
counting on a ‘‘known’’ phylogeny, they have a Poisson
distribution (Equation 1) under our assumptions on the
substitution model. We can thus use standard Poisson
inference methodology to build confidence intervals
for them (Johnson and Kotz 1969), which we do in
Table 1. We also normalize their estimates to be on the
same scale as ours, by constraining their sum to be the
same as the sum of our estimates for the same range
(16,051–16,365). We observe that the confidence inter-
vals from their estimates are slightly smaller than ours
for the fastest sites, but get much larger than ours as the
rates decrease. For example, if we consider the first four
rows in Table 1, we see that in rows 1–3, where the rates
are relatively small, the confidence intervals from all
variants of our methodology are smaller than those

TABLE 4

Coalescent tree size estimates

Hg No. samples Total tree length (yr)

A 361 4,628,667
B 301 5,624,497
C 229 3,089,925
D 147 2,692,974
H 6,232 36,186,219
M* 255 5,878,315
V 471 1,726,071

Figure 6.—Comparison of the estimates (black circles) and
confidence intervals from two of our variants and Bandelt

et al. (2006). Note that the y-axis is on a logarithmic scale.
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based on Bandelt et al. (2006). In row 4, which corre-
sponds to 16,093, one of the fastest sites in HVS-I (and
coincidentally one of the sites where the rate estimate
of Bandelt et al. 2006 most disagrees with ours), the
confidence interval based on Bandelt et al. (2006) is
smaller than those our methods generate. We can infer
that our approach, which uses less phylogenetic infor-
mation but a much larger number of samples overall,
has advantages for estimating fast—but not the fastest—
sites compared to Bandelt et al. (2006). Qualitatively,
our estimates and theirs seem to agree well, and the
confidence intervals almost invariably overlap. A graph-
ical representation of the confidence interval relation-
ships in five randomly selected sites can be seen in
Figure 6.

Extensions of the methodology: In this article we
have discussed and demonstrated the application of our
methodology to single-nucleotide polymorphisms in
human mtDNA HVS-I. This is a natural application be-
cause these sites are highly polymorphic, large amounts
of data are available, and Hg classification is relatively
easy to obtain. The natural question is, What other
domains would comply with these same conditions?

A simple extension is application to mtDNA HVS-I
across species, as long as site-specific mutation rates are
assumed similar between species, and we have coding-
SNP verified Hg allocation for each species.

A more interesting extension may be to short tandem
polymorphisms on the Y chromosome (Y-STRs), which
comply with all three conditions. The mutation rates
(and, more generally, mechanisms) of these patterns
have been under intense study for several years, but prog-
ress is difficult to make, unless some highly nonrealistic
assumptions are made (for more details, see, for ex-
ample, Zhivotovsky 2001; Calabrese and Sainudiin

2005). Our methodology would be directly applicable to
Y-STR if we could assume that the mutation rate of each
Y-STR does not depend on its state (repeat count). This
is a slightly more general assumption than the stepwise
mutation model, identical, for example, to the STR mu-
tation model assumed by Zhivotovsky (2001). In that
case, our approach can be immediately applied to cal-
culate this probability, using the same assumption, that
bik¼ 1 if and only if the STR count is fixed for all samples
in an Hg.

The real challenge is to accommodate dependence
on count number in the STR mutation model. This can
be done by assuming a different rate lil for each site i
and count l and defining binomial variables bilk that
allow count dependence. The only remaining question
is which value l would be used for (site, Hg) combina-
tions where this STR count is polymorphic. Several ap-
proaches come to mind, but detailed discussion and
experimentation are a topic for future research.

We thank the Genographic Project participants who donated their
genetic information. This study was supported by the National Geo-
graphic Society, IBM, and the Waitt Family Foundation. S.R. is partially

supported by European Union grant MIRG-CT-2007-208019; C.T.S. is
supported by The Wellcome Trust.

LITERATURE CITED

Bandelt, H., L. Quintana-Murci, A. Salas and V. Macaulay,
2002 The fingerprint of phantom mutations in mitochondrial
DNA data. Am. J. Hum. Genet. 71(5): 1150–1160.

Bandelt, H. J., Q. P. Kong, M. Richards and V. Macaulay,
2006 Estimation of mutation rates and coalescence times: some
caveats, pp. 47–90 in Human Mitochondrial DNA and the Evolution
of Homo sapiens, edited by H. J. Bandelt, V. Macaulay and M.
Richards. Springer, Berlin.

Behar, D. M., S. Rosset, J. Blue-Smith, O. Balanovsky, S. Tzur

et al., 2007 The genographic project public participation mito-
chondrial DNA database. PLoS Genet. 3(6): e104.

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discov-
ery rate: a practical and powerful approach to multiple testing.
J. R. Stat. Soc. Ser. B 57: 289–300.

Bickel, P., F. Gotze and W. van Zwet, 1997 Resampling fewer than
n observations: gains, losses and remedies for losses. Stat. Sin. 7:
1–31.

Calabrese, P., and R. Sainudiin, 2005 Models of microsatellite
evolution, Chap. 10 in Statistical Methods in Molecular Evolution,
edited by R. Nielsen. Springer, Berlin/Heidelberg, Germany/
New York.

Cleveland, W., E. Grosse and W. Shyu, 1992 Local regression
models, Chap. 8 in Statistical Models in S, edited by J. Chambers

and T. Hastie. Wadsworth & Brooks/Cole, Belmont, CA.
Doda, J. N., C. T. Wright and D. A. Clayton, 1981 Elongation of

displacement-loop strands in human and mouse mitochondrial
DNA is arrested near specific template sequences. Proc. Natl.
Acad. Sci. USA 78: 6116–6120.

Efron, B., and R. Tibshirani, 1994 An Introduction to the Bootstrap.
Chapman & Hall/CRC, London/New York.

Excoffier, L., and Z. Yang, 1999 Substitution rate variation among
sites in the mitochondrial hypervariable region i of humans and
chimpanzees. Mol. Biol. Evol. 16: 1357–1368.

Falkenberg, M., M. G. Larsson and C. M. Gustafsson, 2007 Dna
replication and transcription in mammalian mitochondria.
Annu. Rev. Biochem. 76: 679–699.

Felsenstein, J., 2003 Inferring Phylogenies. Sinauer Associates, Sun-
derland, MA.

Forster, P., R. Harding, A. Torroni and H. Bandelt, 1996 Origin
and evolution of native American mtDNA variation: a reap-
praisal. Am. J. Hum. Genet. 59: 935–945.

Hapmap Consortium, 2005 A haplotype map of the human ge-
nome. Nature 437: 1299–1320.

Hardison, R., 2003 Comparative genomics. PLoS Biol. 1(2): e58.
Ho, S., M. Phillips, A. Cooper and A. Drummond, 2005 Time de-

pendency of molecular rate estimates and systematic overestima-
tion of recent divergence times. Mol. Biol. Evol. 22: 1561–1568.

Hollander, M., and D. Wolfe, 1973 Nonparametric Statistical Infer-
ence. John Wiley & Sons, New York.

Johnson, N., and S. Kotz, 1969 Discrete Distributions. Houghton Mif-
flin Company, Boston.

Jukes, T., and C. Cantor, 1969 Evolution of protein molecules, pp.
21–132 in Mammalian Protein Metabolism, Vol. 3, edited by H.
Munro. Academic Press, New York.

Kimura, M., 1980 A simple method for estimating evolutionary rate
of base substitutions through comparative studies of nucleotide
sequences. J. Mol. Evol. 16: 111–120.

Kimura, M., 1981 Estimation of evolutionary distances between ho-
mologous nucleotide sequences. Proc. Natl. Acad. Sci. USA 78:
454–458.

Mateiu, L., and B. Rannala, 2006 Inferring complex DNA substi-
tution processes on phylogenies using uniformization and data
augmentation. Syst. Biol. 55: 259–269.

Mayrose, I., D. Graur, N. Ben-Taland T. Pupko, 2004 Comparison of
site-specific rate-inference methods for protein sequences: empiri-
cal Bayesian methods are superior. Mol. Biol. Evol. 21: 1781–1791.

McCullagh, P., and J. Nelder, 1989 Generalized Linear Models.
Chapman & Hall, London.

Estimation of Site-Specific Mutation Rates 1523



Meyer, S., and A. von Haeseler, 2003 Identifying site-specific sub-
stitution rates. Mol. Biol. Evol. 20: 182–189.

Nielsen, R., 1997 Site-by-site estimation of the rate of substitution
and the correlation of rates in mitochondrial DNA. Syst. Biol.
46: 346–353.

Roberti, M., C. Musicco, P. L. Polosa, F. Milella, M. N. Gadaleta

et al., 1998 Multiple protein-binding sites in the TAS-region of
human and rat mitochondrial DNA. Biochem. Biophys. Res.
Commun. 243: 36–40.

Rosset, S., 2007 Efficient inference on known phylogenetic trees
using Poisson regression. Bioinformatics 23: e142–e147.

Sbisa, E., F. Tanzariello, A. Reyes, G. Pesole and C. Saccone,
1997 Mammalian mitochondrial d-loop region structural anal-
ysis: identification of new conserved sequences and their func-
tional and evolutionary implications. Gene 205: 125–140.

Siepel, A., and D. Haussler, 2005 Phylogenetic hidden Markov
models, pp. 325–351 in Statistical Methods in Molecular Evolution,
edited by R. Nielsen. Springer, Berlin/Heidelberg, Germany/
New York.

Tamura, K., and M. Nei, 1993 Estimation of the number of nucle-
otide substitutions in the control region of mitochondrial DNA
in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.

Torroni, A., A. Achilli, V. Macaulay, M. Richards and H. J. Bandelt,
2006 Harvesting the fruit of the human mtDNA tree. Trends
Genet. 22: 339.

Venables, W., and B. Ripley, 1994 Modern Applied Statistics With
S-Plus. Springer, New York.

Yang, Z., 1993 Maximum likelihood estimation of phylogeny from
DNA sequences when substitution rates differ over sites. Mol.
Biol. Evol. 10: 1396–1401.

Yang, Z., 1994 Maximum likelihood phylogenetic estimation from
DNA sequences with variable rates over sites: approximate meth-
ods. J. Mol. Evol. 39: 306–314.

Yang, Z., 1995 A space-time process model for the evolution of DNA
sequences. Genetics 139: 993–1005.

Yang, Z., and T. Wang, 1995 Mixed model analysis of DNA sequence
evolution. Biometrics 51: 552–561.

Zhivotovsky, L. A., 2001 Estimating divergence time with the use
of microsatellite genetic distances: impacts of population growth
and gene flow. Mol. Biol. Evol. 18: 700–709.

Communicating editor: R. Nielsen

1524 S. Rosset et al.


