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Abstract

Cyclopes didactylus, commonly called silky anteater, is the smallest and least studied of the anteaters. It is an arbo-
real species occurring in rainforests, ranging from southern Mexico to Central and South America, with an apparently
disjoint distribution between Amazon and Atlantic rainforests in Brazil. Although seven subspecies are recognized,
little is known about its geographical variation. Thus, to evaluate the population dynamics and evolutionary history of
the South American silky anteater, we analyzed 1542 bp sequences of the mitochondrial control region (CR), COI
and Cyt-b genes of 32 individuals. Haplotype network, AMOVA and molecular dating analyses were performed and
identified seven geographic clusters. The split of lineages separating Cyclopedidae (Cyclopes) and
Myrmecophagidae (Myrmecophaga and Tamandua genera) was estimated around 41 million years ago (mya), and
the intraspecific lineage diversification of C. didactylus began in the Miocene around 13.5 mya, likely in southwestern
Amazonia. Tectonic and climatic events that took place in South America during the Tertiary and Quaternary seem to
have influenced the evolutionary history of the species at different levels. This is the first study to investigate the pop-
ulation dynamics and phylogeography of the silky anteater, which contributes to a better comprehension of the
biogeography of South America.
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Introduction

Cyclopes didactylus, commonly called silky anteater,

is the only living species of the Cyclopedidae family and

the smallest of all known anteaters with adults averaging

430 mm long and 235 g of weight (Gardner, 2007). It has

nocturnal habits and appears to be completely arboreal

(Montgomery, 1985). This species exhibits a “dense,

woolly to silky, silvery-gray to golden-brown body pelage,

two digits on the manus and four on the pes, a prehensile

tail” (Gardner, 2007) and a “hind feet highly modified for

grasping small twigs while climbing and feeding” (Wetzel,

1985).

The silky anteater inhabits tropical rainforests, rang-

ing from southern Mexico to Central and South America,

and is apparently disjoint between Amazon and Atlantic

rainforests in Brazil (Figure 1; Gardner, 2007). In South

America it occurs in the northern Andean valleys of Co-

lombia, in the west of the Andes along the Pacific coast

lowlands of Colombia and Ecuador, in the rainforests of

Venezuela and Guianas, and southwards into the Amazon

basin drainage of the lowlands of Colombia, Ecuador, Peru,

Brazil and Bolivia (Gardner, 2007; Miranda and Superina,

2010; Superina et al., 2010). The Atlantic Forest of the

northeastern coast of Brazil harbors a small and apparently

isolated population, ranging from the states of Rio Grande

do Norte to Alagoas (Miranda and Superina, 2010). Con-

sidering its wide distribution, little is known of its geo-

graphical variation (Aguiar and Fonseca, 2008).

Seven subspecies of the silky anteater are currently

recognized, which is based mainly on coat color and the

presence of darker dorsal, sternal or ventral stripes (Wetzel,

1982; Gardner, 2007; Hayssen et al., 2012). Among them,

C. d. mexicanus is the only one that does not occur in South

America, while C. d. dorsalis is present mainly in Central

America but also occurs in northern and northwestern Co-

lombia (Wetzel, 1982; Gardner, 2007; Hayssen et al.,

2012). The last subspecies found in the west of the Andes is

C. d. eva, which occurs in the Pacific coast lowlands of Co-

lombia and Ecuador (Wetzel, 1982; Gardner, 2007;

Hayssen et al., 2012). All the other subspecies are located

in the east of the Andean Cordillera including C. d.

didactylus, which is present from Venezuela through
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Guianas and in northeastern Brazil; C. d. melini, occurring

in the northern Amazon basin of Brazil and adjoining Ven-

ezuela and Colombia; C. d. ida, which is found throughout

the western Amazon basin; and C. d. catellus, occurring in

southeastern Peru, northeastern Bolivia and central Ama-

zon basin (Wetzel, 1982; Gardner, 2007; Hayssen et al.,

2012).

There is no fossil record for the silky anteater (Mc-

Donald et al., 2008), but Palaeomyrmidon incomptus, a

fossil taxon from the Huayquerian period (9-6.8 mya), is

considered its sister group (Hirschfeld, 1976; Gaudin and

Branham, 1998). Moreover, Delsuc et al. (2004, 2012),

based on the analysis of nuclear and mitochondrial data

from all living xenarthran genera, estimated the divergence

between Cyclopedidae (Cyclopes) and Myrmecophagidae

(Myrmecophaga and Tamandua genera) at around 40 and

45.5 mya (middle Eocene), respectively. However, a more

recent estimate by Gibb et al. (2016) that used complete

mitogenomes from all living xenarthran species set it at ca.

37.8 mya.

Home to the origin and diversification of all

xenarthran species (Patterson and Pascual, 1972), the South

American continent has undergone several geological

changes during the Tertiary and Quaternary. Major phases

of Andean uplift started in the Paleocene and the most in-

tense peaks of mountain building in the Northern and Cen-

tral Andes took place in the last 30 million years (Sempere

et al., 1990, 1994; Lundberg et al., 1998; Hoorn et al.,

2010; Antonelli and Sanmartín, 2011). Episodes of marine

incursions from the Pacific (Lundberg et al., 1998;

Antonelli et al., 2009), the Caribbean Sea (Hoorn, 1993;

Lovejoy et al., 2006) and the Paraná River basin (Lundberg

et al., 1998) were recorded from the Paleocene until the

Miocene (Lovejoy et al., 2006). Periods of thermal opti-

mum occurred in the early Eocene, late Oligocene and mid-

dle Miocene (Zachos et al., 2001) while global cooling

trends were documented from middle Eocene to middle

Oligocene and since the late Miocene (Zachos et al., 2001).

The uplift of the Panama Isthmus triggered the Great Amer-

ican Biotic Interchange (GABI) by ca. 3.5 mya (Hoorn et

al., 2010; Antonelli and Sanmartín, 2011). However, recent

studies suggest a starting for dispersal pulses of the GABI

as early as the Oligocene-Miocene transition (Bacon et al.,

2015), and at least a partial closure of the Central American

seaway by 13-15 mya (Montes et al., 2015). Finally, the

Pleistocene glaciations started ca. 2.6 mya (Hoorn et al.,

2010; Antonelli and Sanmartín, 2011), causing many

changes in the South American rainforest distribution (Oli-

veira et al., 1999; Auler et al., 2004; Wang et al., 2004;

Ortiz-Jaureguizar and Cladera, 2006). All these tectonic

and climatic events during the Tertiary and Quaternary

changed the landscapes on the continent and some of them

were previously associated with synchronous diversifica-

tion events in Xenarthra (Delsuc et al., 2004).

To date there is no genetic study regarding population

structure and dynamics, and timing of intraspecific lineage
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Figure 1 - Map of Cyclopes didactylus range and sampling localities. Species distribution based on Superina et al. (2010). Different symbols mark locali-

ties of each geographic clusters. Square = UA; diamond = RO; asterisk = LS; star = PV; pentagon = CWA; circle = MOSF; and triangle = NB.



diversification for the silky anteater. Here we present the

first attempt, using three mitochondrial fragments, to assess

the phylogeographic patterns and date the divergences of

the South American populations of Cyclopes didactylus to

compare them with environmental changes occurring in the

continent at different times.

Materials and Methods

Sample collection and DNA extraction

Liver, muscle, blood or hair samples of 31 specimens

of Cyclopes didactylus from the Peruvian Departments of

Ucayali (n = 2) and Loreto (n = 2), Suriname (n = 1), Co-

lombia (n = 1) and the Brazilian States of Acre (n = 1),

Amapá (n = 1), Amazonas (n = 5), Maranhão (n = 3), Pará

(n = 6), Pernambuco (n = 4), Piauí (n = 3 - new occurrence

record; F. R. Miranda, unpublished data), Rio Grande do

Norte (n = 1) and Rondônia (n = 1) were collected since

2005 by the Institute of Research and Conservation of Ant-

eaters in Brazil (Projeto Tamanduá) or obtained from other

museums and institutions, and deposited at Laboratório de

Biodiversidade e Evolução Molecular (LBEM) in Univer-

sidade Federal de Minas Gerais (UFMG), Brazil. The sam-

ples were preserved in 70% ethanol and the DNA

extraction was performed, according to reagents availabil-

ity, by a standard phenol-chloroform protocol (Sambrook

and Russell, 2001) or using a DNeasy Blood & Tissue Kit

(QIAGEN) following the manufacturer’s instructions. A

sequence from a French Guiana individual was retrieved

from GenBank (accession number KT818539) for some

analyses. A map of sampling localities and a detailed list of

samples are available in Figure 1 and Table S1, respec-

tively.

Amplification and sequencing

Fragments of the mitochondrial control region (CR)

and the Cytochrome c Oxidase subunit I (COI) and Cyto-

chrome b (Cyt-b) genes were amplified with primers L0

[L15445] (Douzery and Randi, 1997) and E3 [H15978]

(Huchon et al., 2001), LCO1490 and HCO2198 (Folmer et

al., 1994), and CytB-L =

5’-CCATGAGGACAAATATCATTCTGAGG-3’ and

CytB-H = 5’-TGGTTTACAAGACCAGTGTAAT-3’

(previously designed by our laboratory), respectively. Am-

plification reactions were carried out in a final volume of

10 �L containing 10 ng of DNA, 1 x reaction buffer

(Invitrogen), 1.5 mM MgCl2 (Invitrogen), 100 �M dNTPs,

0.2 �M of each primer (forward and reverse), 0.5 mg/mL of

BSA adjuvant and 0.2 U of Platinum® Taq DNA Polymer-

ase (Invitrogen). Cycling reactions consisted of an initial

denaturation step of 94 °C for 5 min, followed by 35 cycles

of 94 °C for 30 s, 50 °C (COI), 52 °C (CR) or 53 °C (Cyt-b)

for 45 s, 72 °C for 1 min, and a final extension step of 72 °C

for 10 min. Adjustments in PCR reagents and template

DNA concentrations and in primers annealing temperatures

were made when necessary. PCR efficiency was assessed

by electrophoresis on 1% agarose gel and the amplicons

were submitted to purification protocol by polyethylene

glycol 20% precipitation (described in Santos Júnior et al.,

2015). Purified amplicons were sequenced in a

MegaBACE 1000 DNA Sequencing System (Amersham-

Biosciences) or in an ABI 3130xl Genetic Analyzer (Ap-

plied Biosystems).

Data analysis

Consensus sequences were generated with Phred v.

0.20425 (Ewing and Green, 1998; Ewing et al., 1998),

Phrap v. 0.990319 (Green, 1994-1999) and Consed 19.0

(Gordon et al., 1998) or SeqScape v. 2.6 (Applied Bio-

systems) and aligned in MEGA 7 (Kumar et al., 2016).

The concatenated sequences of the three mitochon-

drial fragments were used to construct a median-joining

haplotype network (Bandelt et al., 1999) using the NET-

WORK 5 software (Fluxus Technology Ltd, 1999-2016) to

visualize the relationships between haplotypes and their

geographical distribution. Also an analysis of molecular

variance (AMOVA; Excoffier et al., 1992) was performed

in Arlequin v.3.5 (Excoffier and Lischer, 2010) to assess

the distribution of genetic variability at different hierarchi-

cal levels. For the latter analysis, we included only the

haplotype network clusters containing two or more samples

and tested for significance with 10,000 permutations

(P < 0.05).

To infer on the evolutionary history of the species, a

molecular dating analysis was carried out using the BEAST

2.3 package (Bouckaert et al., 2014). In this analysis, CR

sequences were not considered, and both COI and Cyt-b se-

quences were partitioned by codon position. The analysis

was performed using the reversible-jump based substitu-

tion model (Bouckaert et al., 2013), allowing for gamma

rate heterogeneity and invariant sites, and a relaxed clock

log-normal model with a birth-death tree prior combined

with soft fossil calibration constraints (Yang and Rannala,

2006). Calibration intervals for crown xenarthran nodes

were based on Meredith et al. (2011) and are available in

Table S2. Sequences of Myrmecophaga tridactyla

(KT818549), Tamandua mexicana (KT818551), Taman-

dua tetradactyla (KT818552), Bradypus torquatus

(KT818524), Choloepus didactylus (KT818537) and

Dasypus kappleri (KT818541) retrieved from GenBank

were used as outgroups. Three independent MCMC chains

were run for 50,000,000 generations and sampled every

5,000 generations. Trace files were checked for chain con-

vergence and sufficient effective sample sizes (ESS) in

Tracer v. 1.6 (Rambaut et al., 2014) and the tree files were

combined in LogCombiner with a 50% burn-in. The maxi-

mum clade credibility (MCC) tree and the associated poste-

rior probabilities and common ancestor heights were sum-

marized with a 33% burn-in in TreeAnnotator from the

15,000 combined trees sampled from the three independent

42 Cyclopes didactylus phylogeography



runs. BEAST 2.3 runs were carried out on CIPRES Science

Gateway v.3.3 (Miller et al., 2010).

Results

Sequencing

CR sequences varied in length from 299 to 308 bp due

to indels (309 bp alignment; KU596973-KU597000), COI

sequences of 555 bp (KU597001-KU597027) and Cyt-b se-

quences of 678 bp (KU597028-KU597057) were obtained

for 28, 27 and 30 individuals, respectively. All of the speci-

mens had at least one of the fragments sequenced, but only

the 25 individuals that presented sequences for the three

fragments were considered in the network and AMOVA

with no gaps allowed. However, individuals with missing

COI or Cyt-b sequences were included in the molecular dat-

ing analysis.

Genetic structure

The haplotype network revealed 20 mitochondrial

haplotypes grouped in seven geographic clusters separated

by a large number of mutations (Figure 2). These clusters

correspond to haplotypes found in: Ucayali and Acre (UA

cluster), Rondônia (RO cluster) and Porto de Moz and

Vitória do Xingu (PV cluster), all located on the right bank

of the Amazon River; Loreto and Santa Isabel do Rio Negro

(LS cluster) and Manaus, Oriximiná, Suriname and French

Guiana (MOSF cluster), all located on the left bank of the

Amazon River; Colombia to the west of the Andes (CWA

cluster); and Maranhão, Pernambuco and Rio Grande do

Norte in northeastern Brazil (NB cluster). There were nei-

ther predominant nor shared haplotypes between clusters

showing a marked genetic structure according to spatial

distribution. The largest amount of mutation steps (> 138)

occurred between two groups of haplotype clusters that co-

Coimbra et al. 43

Figure 2 - Mitochondrial haplotype network showing seven geographic clusters. The network was constructed with concatenated mitochondrial data us-

ing the median-joining algorithm. Circle sizes are proportional to frequencies, and mutation step numbers greater than one are indicated on the lines. UA =

Ucayali; RO = Rondônia; LS = Loreto and Santa Isabel do Rio Negro; PV = Porto de Moz and Vitória do Xingu; CWA = Colombia to the west of the An-

des; MOSF = Manaus, Oriximiná, Suriname and French Guiana; NB = northeastern Brazil.



incided with a south-north division of the species distribu-

tion: the UA and RO clusters to the south and all the others

to the north. Besides, the RO and CWA clusters comprised

only one individual each and, thus, were excluded from the

following AMOVA.

The AMOVA results for the five clusters analyzed

(UA, LS, PV, MOSF and NB) reinforced the genetic struc-

ture exhibited in the haplotype network with a �ST estimate

of 0.904 (P = 0.00000) indicating that most part of the ge-

netic diversity of C. didactylus is due to differences be-

tween the clusters.

Molecular dating

The MCC tree obtained in the molecular dating anal-

ysis (Figure 3) showed a topology congruent with previous

molecular phylogenetic studies involving xenarthran gen-

era (Delsuc et al., 2001, 2002, 2003, 2012; Möller-Krull et

al., 2007). In addition, it revealed two major monophyletic

clades comprising seven mitochondrial lineages within

Cyclopes didactylus, all fully supported, that corresponded

to the south-north division of the species range and the

seven geographic clusters found on the haplotype network,

respectively. The phylogenetic relations between these

mtDNA lineages were also supported by high posterior val-

ues (� 0.82) in all branches except the one grouping MOSF

and NB as sister clusters (0.67). The individuals from

Loreto (CD017), Acre (CD030), Amapá (CD016) and Ma-

naus (CD032), and Piauí (CD027, CD028 and CD029),

which were not included in the haplotype network, grouped

in the phylogeny within the LS, UA, MOSF and NB lin-

eages, respectively, according to our expectations. Further-

more, our time estimate (Figure 3 and Table 1) is compati-

ble with previous molecular dating studies (Delsuc et al.,

2004, 2012; Gibb et al., 2016). The only notable difference

regards Myrmecophagidae and Tamandua nodes. For these

nodes, the newly estimated ages, 19 and 2 mya, respec-

tively, are considerably older than previous ones, 13-10 and

1 mya, respectively (Delsuc et al., 2004, 2012; Gibb et al.,

2016). Such differences are expected with a denser taxon

sampling as reported by Gibb et al. (2016) for Folivora,

Dasypodinae, Euphractinae and Tolypeutinae nodes.

Discussion

Phylogeographic patterns in Cyclopes didactylus

The mtDNA sequences of the silky anteater analyzed

here revealed the existence of two lineages (UA and RO)

located in the southern part of the species’ current range

and five lineages (LS, PV, CWA, MOSF and NB) present

in its northern part. This pattern of south-north division is

supported by the largest amount of mutation steps (> 138)

found between those haplotype clusters in the network

(Figure 2) and by the oldest divergence (13.45 mya) within

C. didactylus in the dated phylogeny (Figure 3 and Table

1). Even though we could not determine a clear geographic

boundary for this major genetic division, it indicates an ini-

44 Cyclopes didactylus phylogeography

Figure 3 - Molecular timescale for Cyclopes didactylus and other xenarthran nodes inferred in this study. Node ages were obtained using a relaxed clock

model under the reversible-jump based substitution model, allowing gamma rate heterogeneity and invariant sites, and a birth-death tree prior with soft

fossil calibrations. Node bars indicate the 95% HPD intervals for age estimates in million years ago. Plain black and white node bars indicate constrained

and unconstrained nodes, respectively. Divergence dates less than 1 mya are not represented. Letters at nodes refer to Table 1.



tial diversification close to the Andes. In addition, the UA,

RO and PV lineages seem to be geographically isolated

from the LS and MOSF lineages by the Solimões/Amazon

Rivers. Moreover, there is a phylogeographic break be-

tween LS and MOSF lineages, which may be represented

by the Negro River acting as a barrier. Although the Soli-

mões/Amazon and Negro Rivers apparently limit the range

of some of the mtDNA lineages of C. didactylus, they may

not be historical boundaries or causal mechanisms for the

divergences.

The CWA lineage is isolated from the Amazonian

silky anteaters by the eastern Andean Cordillera in northern

Colombia. This lineage was probably already there when

the eastern Andes was no more than 40% of its modern ele-

vation (Gregory-Wodzicki, 2000). Thus, the mountain up-

lift in that region between 5 and 2 mya (Lundberg et al.,

1998; Gregory-Wodzicki, 2000; Hoorn et al., 2010) may be

likely the vicariant event responsible for its isolation and

differentiation at ca. 3.05 mya. This pattern of west and east

divergence in the Andean region is also observed for the

sloths B. variegatus and C. hoffmanni (Moraes-Barros and

Arteaga, 2015), woodcreepers of the genus Dendrocincla

(Weir and Price, 2011) howler monkeys (Alouatta;

Cortés-Ortiz et al., 2003), and bats (Redondo et al., 2008).

The haplotypes from the Brazilian Atlantic forest

formed a monophyletic group (NB) with the haplotypes

from Maranhão and Piauí suggesting a past connection be-

tween the Amazon and the Atlantic forests, at least 2.72

mya, when this lineage diverged. Such connection through

northeastern Brazil was also suggested for phylogeograph-

ic patterns of woodcreeper species endemic to the Atlantic

forest (Cabanne et al., 2008; Weir and Price, 2011) and

small mammals (Costa, 2003).

From an evolutionary standpoint, the first lineages of

silky anteater to diverge (UA-RO and LS) are found in

Western Amazonia, and those diverging more recently are

found in Eastern Amazonia (PV and MOSF) and the Atlan-

tic forest (NB), or to the west of the Andes in northwestern

South America (CWA). This suggests that C. didactylus

mitochondrial lineages originated in Western Amazonia,

somewhere around Peru.

The large amount of mutation steps separating groups

of exclusive haplotypes, which corresponded to mono-

phyletic lineages, and the high degree of genetic differenti-

ation (�ST = 0.904) between at least five of these groups

(UA, LS, PV, MOSF and NB), not only shows that C.

didactylus is genetically and geographically structured, but

also that the populations and their mtDNA lineages are very

distinct from each other. However, such remarkable genetic

structure disagrees with the proposed subspecies division

(Wetzel, 1982; Gardner, 2007), where five of them should

be represented in our sampling based on their ranges

(Hayssen et al., 2012): C. d. catellus (Rondônia/Brazil), C.

d. didactylus (Pernambuco-Rio Grande do Norte/Brazil,

Suriname and French Guiana), C. d. dorsalis (Colombia),

C. d. ida (Ucayali-Loreto/Peru and Acre-Amazonas/Brazil)

and C. d. melini (Amazonas-Pará-Amapá-

Maranhão/Brazil). This raises the need to review the cur-

rent taxonomic status of Cyclopes didactylus (F. R.

Miranda et al., in prep.).

Molecular dating of xenarthran lineages

Our age estimates corroborate the general findings

about xenarthrans, which first appeared in the early Paleo-

cene and subsequently underwent an impressive radiation

during the Tertiary, when South America was isolated from

other landmasses (Delsuc et al., 2004). Major tectonic and

climatic events were already associated with the diversifi-

cation of sloths, anteaters and armadillos (Delsuc et al.,

2004; Moraes-Barros and Arteaga, 2015; Gibb et al.,

2016). However, a few discrepancies regarding previous

time estimates (Delsuc et al., 2004, 2012; Gibb et al., 2016)

were observed for divergences within Myrmecophagidae,

and can be explained by the increased number of Cyclopes

didactylus samples used in our analysis. As previously said,

this is expected with a denser taxon sampling (Gibb et al.,

2016), which affects the coalescence between

myrmecophagid species causing them to become older:

around 19 mya compared to 13-10 mya (Delsuc et al., 2004,

2012; Gibb et al., 2016) for the divergence between

Myrmecophaga and Tamandua, and around 2 mya com-

pared to 1 mya (Gibb et al., 2016) for the separation be-

tween T. tetradactyla and T. mexicana. The

myrmecophagid splits are discussed below.

The divergence between Myrmecophaga tridactyla

and Tamandua at ca. 19 mya correlates well with the end of

Coimbra et al. 45

Table 1 - Divergence time estimates for Cyclopes didactylus and other

xenarthran nodes inferred in this study. Node ages were obtained using the

reversible-jump based substitution model with gamma rate heterogeneity

and invariant sites and a relaxed clock model. Mean posterior estimates

and 95% HPD intervals are expressed in million years ago. Divergence

dates less than 1 mya are not shown. Letters A - E refer to nodes in

Figure 3.

Node Mean Min. Max.

Xenarthra a 62.89 55.68 69.91

Pilosa a 58.15 48.46 66.96

Folivora a 26.18 16.81 36.13

Vermilingua a 40.99 30.9 51.3

Myrmecophagidae 18.92 10.64 27.51

T. mexicana / T. tetradactyla 2.06 0.87 3.46

Cyclopes didactylus 13.45 8.34 18.82

A 3.97 1.94 6.27

B 5.88 3.43 8.42

C 4.97 3.0 7.08

D 3.05 1.78 4.48

E 2.72 1.39 3.78

a fossil calibrated nodes



the first Bolivian tectonic crisis in the early Miocene (27-19

mya; Sempere et al., 1990). This period also coincides with

a global warm phase, which culminated in the Middle Mio-

cene Climatic Optimum (Zachos et al., 2001). Such events

were already associated with the diversification of modern

sloths lineages and Tolypeutinae armadillos (Delsuc et al.,

2004).

The age for separation between T. mexicana and T.

tetradactyla at ca. 2 mya matches up with the ending of the

final uplift of the Northern Andes (5-2 mya; Lundberg et

al., 1998; Hoorn et al., 2010). Thus, this geologic event

may explain the vicariance seen between the two Taman-

dua species, as suggested by Gibb et al. (2016).

Insights on the evolutionary history of Cyclopes
didactylus

The split of lineages separating Cyclopes and the

other anteaters genera occurred around 41 mya, in the mid-

dle Eocene, shortly after a large episode of mountain uplift

in the Andes of Peru known as “Incaic tectonic phase II”,

estimated between 45 and 41 mya (Noble et al., 1990;

Lundberg et al., 1998; Delsuc et al., 2004; Antonelli et al.,

2009). After that, an interval of more than 27 million years

preceded the start of the silky anteater diversification.

The first divergence within Cyclopes didactylus, at

ca. 13.5 mya, separated two major monophyletic clades:

one that would give rise to the UA and RO lineages, in the

south of the species current distribution; and other that

would originate all the other lineages, in the north. This

connects with the start of an intensified uplift in the Central

and Northern Andes between 13 and 11 mya (Antonelli et

al., 2009; Hoorn et al., 2010) and with the final stages of the

so-called “Pebas” system (Hoorn et al., 2010). From 23 to

11 mya, this system transformed most of Western Ama-

zonia in a large wetland of shallow lakes and swamps that

fragmented the preexisting rainforest (Antonelli et al.,

2009; Hoorn et al., 2010). For an arboreal species with low

dispersal abilities like the silky anteater, a fragmented for-

est habitat could promote isolation for a period of time suf-

ficient for the divergence between the southern and

northern clades.

From 11 to 7 mya, parallel to a new period of rapid

Andean mountain building sometimes termed “Quechua

phases II and III” (Mégard, 1984; Noble et al., 1990;

Antonelli et al., 2009), the lacustrine Pebas system changed

into a fluvial or fluviotidal “Acre” system (Hoorn et al.,

2010). The return of forested habitats shortly after the de-

mise of Western Amazonian wetlands (Hoorn et al., 2010)

may have triggered the divergence of the mitochondrial lin-

eage found in Loreto and Santa Isabel do Rio Negro (LS) at

ca. 6 mya. Similarly, plant diversity also increased between

7 and 5 mya, following the return of terrestrial conditions

(Hoorn et al., 2010).

The subsequent divergence between PV and the other

mitochondrial lineages at around 5 mya, cannot be ex-

plained by vicariance and, thus, may have been prompted

by other factors such as biotic interactions.

The haplotypes found in Ucayali and Acre (UA) and

the one found in Rondônia (RO) became separated mito-

chondrial lineages around 4 mya. This period followed the

end of the second major Bolivian tectonic crisis in the late

Miocene (11-5 mya; Marshall and Sempere, 1991).

In the case of the Colombian haplotype (CWA),

which is separated from the other South American lineages

by the Northern Andes, the estimated divergence at ca. 3

mya correlates well, as previously said, with the end of the

final uplift of the Eastern Cordillera in that region

(Lundberg et al., 1998; Gregory-Wodzicki, 2000; Hoorn et

al., 2010), as observed for the vicariance between the two

Tamandua species.

Finally, the mitochondrial lineages found in north-

eastern Amazonia (MOSF) and northeastern Brazil (NB)

diverged at 2.7 mya. The fact that the individuals from

Maranhão coastline forest and Piauí mangrove, both areas

within the main distribution of the species in South Amer-

ica, group together with the small population of the Atlantic

forest suggests that these distribution areas were actually

connected. In addition, the order of the divergences within

the NB lineage is congruent with a dispersal event starting

from Maranhão and crossing all the way to the northeastern

Atlantic forest. A potential cause for this dispersal of C.

didactylus could be associated with the beginning of the

Pleistocene glacial cycles at around 2.6 mya (Hoorn et al.,

2010; Antonelli and Sanmartín, 2011) and a likely connec-

tion between Amazon and Atlantic forests (Costa, 2003;

Auler et al., 2004; Wang et al., 2004; Cabanne et al., 2008;

Batalha-Filho et al., 2013).

The small number of samples from CWA and PV lin-

eages included in our molecular dating analysis, and sam-

pling gaps like the one we have in southern Amazonia,

between Purus and Tapajós rivers, hinders detailed inter-

pretations on how dispersal events occurred and increases

the possibility of unidentified lineages that would likely

change the topology of the phylogeny and, consequentially,

alter the sequence and/or age of the splits. We recognize the

difficulty in obtaining samples of this elusive species, but

future studies will need a denser and more extensive sam-

pling to overcome these problems.

In summary, our results show a strong and complex

genetic structure for the silky anteater population distribu-

tion, and confirm the antiquity of its lineage, which sepa-

rated from the other vermilinguas as early as the middle

Eocene (41 mya) and began to diversify in the late-middle

Miocene (13.5 mya) in southwestern Amazonia. Moreover,

we emphasize the importance of the tectonic and climatic

changes that took place in South America during the Ter-

tiary and Quaternary for the species diversification and

population dynamics.
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