Bradykinin Regulates the Expression of Kinogen Binding Sites on Endothelial Cells

By Jean Marc Zini, Alvin H. Schmaier, and Douglas B. Cines

The vasoactive compound bradykinin (BK) is liberated by proteolytic cleavage from high molecular weight kinogen (HK) and low molecular weight kinogen (LK). Expression of kinogens on cell surface receptors may affect the delivery of BK at sites of inflammation. Therefore, we investigated whether BK itself alters the expression of binding sites for its parent molecules, HK and LK, on the surface of cultured human umbilical vein endothelial cells (HUVEC).

The unique 56-Kd light chain of HK has additional functions, including binding sites for prekallikrein and each chain of HK. Moreover, 50-fold molar excess light chain of HK inhibits 125I-LK binding 51% and 50-fold molar excess HK and the heavy chain of HK inhibit 125I-light chain of HK binding 92% and 76%, respectively. Preincubation of HUVEC with BK produces a transient, concentration-dependent increase in the binding of HK and LK, reaching a maximum 3 to 4 hours after addition of BK (46% increase over control for HK; 57% increase over control for LK; P < .005 for each ligand). Des-Arg⁹-bradykinin, a B₁ receptor agonist, increases kinogen binding to the same extent as BK; the upregulation of kinogen binding sites by BK is partially blocked by a B₁ but not by a B₂ receptor antagonist. The protein kinase C inhibitors (PKC), sphingosine and H₇, completely block the induction of HK receptors by BK. Phorbol 12-myristate 13-acetate (PMA), which also activates PKC, stimulates the binding of HK and the purified light chain of HK to HUVEC as well. However, unlike HK and its light chain, binding of LK and the heavy chain of HK are increased by PMA only in the presence of added calcium ion. These studies show that BK upregulates a common binding site for HK, LK, and each chain of HK on HUVEC. Induction of kinogen receptors on endothelial cells by BK may modulate the generation of this vasoactive compound at sites of vascular injury.

© 1993 by The American Society of Hematology.
plasma (plasma deficient in both HK and LK) was donated by the late Mayne Williams (Philadelphia, PA).

Protein Purification

HK was purified using a modification of the method of Kerbiriou and Griffin by adding 0.2 mol/L L-aminoacapric acid to all buffers and 2 mmol/L diisopropylfluorophosphate to the pooled material before each step. After reduction with 2% β-mercaptoethanol, over 98% of the purified HK migrated as a single band having an apparent molecular mass of 120 Kd on a 7.5% polyacrylamide gel with sodium dodecyl sulfate (SDS-PAGE). The procoagulant activity of the purified HK was assessed by a kaolin-based, activated partial thromboplastin time using total kininogen-deficient plasma as a substrate. Purified HK had a specific activity of 12 to 20 U/mg.

LK was purified from normal plasma by affinity chromatography using carboxymethylpapain-Sepharose 4B followed by chromatography on DEAE-Sephadex (Pharmacia-LKB Biotechnology, Piscataway, NJ). Diisopropylfluorophosphate (2 mmol/L) was added to the starting plasma and each protein fraction before every chromatographic step. All buffers also contained 3 mmol/L EDTA, 0.1 mol/L L-aminoacapric acid, and 1 mol/L benzamidine. A single immunoprecipitation arc was produced when LK was incubated with an antiserum that recognizes both heavy and light chain of kininogens but not by one directed to the LC. The HC of the kininogens did not recognize the purified LC. The HC of HK, and the heavy chain of HK (HC) were prepared from purified HK by cleavage with human urinary kallikrein, generously provided by Dr Fu-Kuen Lin (AMGEN, Inc, Thousand Oaks, CA). The tissue kallikrein was used at a 1/100 molar ratio (33 pg tissue kallikrein in 33 µL) was added to 10 mg HK in 2 mL 10 mmol/L Tris-HCl, 0.15 mol/L NaCl, pH 7.4 for 16 hours at 37°C (the cleaved HK was then reduced with 50 mmol/L DTT followed by alkylation in the dark with 0.25 mol/L iodoacetamide. The cleaved, reduced, and alkylated HK was then applied to an SP Sephadex column in 0.01 mol/L sodium acetate, pH 5.4. The HC of HK was not adsorbed to the cation exchanger, while the L.C was eluted with a linear NaCl gradient from 0.08 mol/L to 0.5 mol/L. The LC of HK migrated as two bands at 56 and 46 Kd on 7.5% SDS-PAGE. The purified LK migrated as a single chain molecule containing its BK moiety because addition of human urinary kallikrein liberated a 4-Kd peptide, seen on 13% SDS-PAGE. It had no procoagulant activity and was detected by an MoAb to the HC of the kininogens but not by one directed to the LC. The HC product of HK migrated as a single band at 64 Kd on 7.5% SDS-PAGE. It had no procoagulant activity and was detected by an MoAb to the HC of the kininogens but not by one directed to the LC. The immunoassay we used can detect low levels of 9 pmol/L and 78 pmol/L, respectively. Thus, the preparations of LC and HC are estimated to contain less than 2% of other chain.

Iodination of Proteins

Purified HK was radiolabeled with Na[125]I using Iodogen by the method of Fraker and Speck under conditions previously described. The specific radioactivity of the protein varied from 5 to 9 µCi/µg such that greater than 34% to 50% of the HK molecules contained an iodine molecule. The radiolabeled protein was greater than 95% trichloroacetic acid-precipitable and retained more than 95% of its antigenicity and procoagulant activity. LK, the light chain of HK, and the heavy chain of HK were radioiodinated using the same procedure. The specific radioactivity of the protein varied from 7 and 11 µCi/µg. Greater than 95% of the radioactivity was precipitated by 10% trichloroacetic acid, and greater than 18% of the protein molecules were iodinated. The protein concentrations of each preparation of [125]I-LK, -HK, -LC, and -HC was determined by radial immunodiffusion using a polyclonal antiserum directed to both the HCs and LCs of the plasma kininogens as previously reported. HK and -LC were also quantified by their coagulant activity. Radiolabeled HK and unlabeled HK bound to HUVEC with equal affinity.

Table 1. Specificity of Radiolabeled Kininogens and Their Subunits' Binding to HUVEC

<table>
<thead>
<tr>
<th>Radioisotop</th>
<th>Protein Competitor</th>
<th>% Inhibition of Binding* (mean ± SEM)</th>
<th>Ki (nmol/L)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>125I-LK</td>
<td>None</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No Zn2+</td>
<td>93 ± 2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HK</td>
<td>99 ± 5</td>
<td>19 ± 5</td>
</tr>
<tr>
<td></td>
<td>LK</td>
<td>100</td>
<td>13 ± 7</td>
</tr>
<tr>
<td></td>
<td>LC</td>
<td>51 ± 7</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HC</td>
<td>107 ± 3</td>
<td>—</td>
</tr>
<tr>
<td>125I-HK</td>
<td>None</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>No Zn2+</td>
<td>96 ± 5</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HK</td>
<td>100</td>
<td>18 ± 6</td>
</tr>
<tr>
<td></td>
<td>LK</td>
<td>103 ± 4</td>
<td>24 ± 4</td>
</tr>
<tr>
<td></td>
<td>LC</td>
<td>79‡</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HC</td>
<td>95‡</td>
<td>—</td>
</tr>
<tr>
<td>125I-LC</td>
<td>None</td>
<td>0</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HK</td>
<td>94‡</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>LK</td>
<td>92‡</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>LC</td>
<td>100</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HC</td>
<td>78‡</td>
<td>—</td>
</tr>
</tbody>
</table>

* HUVEC grown to confluence in 96-well microtiter plates were washed with HEPES-Tyrode’s buffer and incubated with 8.3 nmol/L [125]I-HK, 10 nmol/L [125]I-LK, or 5.0 nmol/L [125]I-LC for 1 hour at 4°C in the presence of 50 µmol/L Zn2+ and the indicated competitor proteins added at 50-fold molar excess. The cells were then washed, and the cell-associated radioactivity was measured. Data are expressed as percentage of binding measured in the presence of 50-fold molar excess of unlabeled ligand. The values represent the mean ± SEM of three independent experiments unless indicated otherwise.

† The Kᵢ of the radiolabeled kininogen by the unlabeled kininogens was determined by the procedure of Muller.

‡ Values represent the mean of two experiments with nearly identical results.

Endothelial Cell Culture

Cultures of HUVEC were prepared and characterized using established methods described previously. The cells were passaged two to four times in Medium 199 (GIBCO, Grand Island NY) supplemented with 10% heat-inactivated fetal calf serum (Flow Laboratories, McLean, VA), penicillin-streptomycin (GIBCO), and endothelial cell growth factor and grown to confluence in 96-well microtiter plates (Flow Laboratories). Cell counts were performed on completion of the binding experiments to ensure uniformity of cell numbers per well in control and treated cells.

Cell Stimulation

Confluent monolayers of HUVEC were incubated with PMA (10 nmol/L) or BK (100 nmol/L) for various periods of time before mea-
suring the binding of 125I-HK (8.3 nmol/L), 125I-LK (10 nmol/L), 125I-LC (5 nmol/L), or 125I-HC (5 nmol/L). In some experiments, HUVEC were incubated with various concentrations of PMA or BK for 3 hours before measuring binding of 125I-HK or -LK. To determine whether B1 or B2 receptors were involved in the BK-induced increase in binding, Des-Arg9-bradykinin, a B1 receptor agonist (D-BK1), D-Arg[Hyp]3, Thr2, D-Tic2, Oic6-bradykinin, a B2 receptor antagonist (HOE 140), or Des-Arg9[Leu]3-bradykinin, a B1 receptor antagonist (D-BK3) were used either alone or together with BK (10 nmol/L), and the binding of 125I-HK was measured after an additional 3-hour incubation. In other experiments, HUVEC were preincubated for 1 hour with control media, media containing H7 (Seikagaku America Inc, St Petersburg, FL), or HA1001 (Seikagaku America Inc) or sphingosine (Sigma) before the addition of PMA (10 nmol/L) to assess the effect of inhibiting protein kinase C (PKC). Finally, in some experiments binding of HK to control HUVECs were compared to cells preincubated with the angiotensin converting enzyme inhibitor, enalapril (1 pmol/L) after both sets of cells were stimulated with various concentrations of bradykinin.

Binding of Radiolabeled Proteins to Endothelial Cells

HUVEC were cooled to 4°C for 30 minutes and then washed three times in HEPES-Tyrode's buffer (0.135 mol/L NaCl, 2.7 mmol/L KCl, 11.9 mmol/L NaHCO$_3$, 0.36 mmol/L NaH$_2$PO$_4$, 14.7 mmol/L HEPES [N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid] containing 1 mg/mL bovine serum albumin, 3.5 mg/mL dextrose pH 7.35, and 50 μmol/L ZnCl$_2$). After washing, HUVEC were incubated with 125I-kininogens (8.3 nmol/L for HK, 10 nmol/L for LK, 5 nmol/L for the light chain of HK, or 5 nmol/L for the heavy chain of HK unless otherwise noted) in HEPES-Tyrode's buffer containing Zn$^{2+}$ for 60 minutes. Total binding, nonspecific binding, and specific binding were determined as above. The specific binding data from (B) were fit on a bound/free versus bound plot according to the method of Scatchard.16 The data shown are the mean ± SEM of three experiments.

Statistical Analysis

All results are given as means ± SEM. The statistical analysis was also performed by the Student's t-test. A P value <.05 was considered significant.
BRADYKININ REGULATES KININOGEN BINDING

Fig 2. Time course of the induction of HK and LK binding sites by BK. (A) HUVEC were incubated with media in the absence or presence of BK (100 nmol/L) for various periods of time and the specific binding of [125I]-HK (8.3 nmol/L) determined. Each point in the figure represents the mean ± SEM of the values derived from four experiments. (B) HUVEC were incubated for the indicated times in the absence or presence of 100 nmol/L BK and the specific binding of [125I]-LK (1.0 nmol/L) was determined. The values shown are the mean ± SEM of three experiments.

RESULTS

Binding of LK and HK to Unstimulated HUVEC

We first determined whether unstimulated HUVEC express unoccupied binding sites for LK similar to those reported for HK.12,13 Binding of [125I]-LK to HUVEC was inhibited completely by 50-fold molar excess unlabeled LK (Table 1). Specific binding of [125I]-LK to HUVEC was completely reversed within 15 minutes at 4°C when excess unlabeled ligand was added within 2 hours after addition of radiolabeled ligand (data not shown). Specific binding of [125I]-LK reached saturation at a ligand concentration of 30 to 40 nmol/L (Fig 1A). At equilibrium, LK bound to a single class of sites (Bmax = 9.7 ± 0.2 × 105 sites/cell; kd = 43.3 ± 8 nmol/L; n = 5) (insert, Fig 1A). Binding of [125I]-LK and binding of [125I]-HK to unstimulated HUVEC performed in parallel gave similar results (Fig 1, A and B). As previously reported, specific binding of [125I]-HK to unstimulated HUVEC required zinc. At equilibrium, HUVEC also expressed a single class of binding sites for [125I]-HK (Bmax = 10.3 ± 0.4 × 105 sites/cell; kd = 40.3 ± 0.9 nmol/L; n = 3) (insert Fig 1B), values in close agreement with those previously reported (Bmax = 9.3 ± 2.0 × 105 sites/cell, kd = 53 ± 13 nmol/L).11,12

Taken together, these results suggested that HK and LK may recognize the same binding sites on unstimulated HUVEC, similar to what has been observed on human platelets. This hypothesis gained additional support from the observation that each unlabeled kininogen inhibited the binding of the other radiolabeled kininogen to HUVEC (Table 1) with similar affinity (Ki = 29.4 ± 5 nmol/L for HK inhibition of [125I]-LK binding vs Ki = 24.5 ± 4 nmol/L for the inhibition of [125I]-HK binding by LK, n = 3). Further, isolated light and heavy chains of HK (LC and HC) inhibited the binding of the complementary chain as well as both intact LK and HK (Table 1). LC inhibited binding of HK and LK by 79% and 51%, while HC inhibited the binding of HK, LK, and LC by 95%, 107%, and 76%, respectively.

Binding of HK and LK to HUVEC Stimulated With BK

It has been reported previously that BK is liberated more slowly from cell-associated HK than from fluid-phase HK.10,11

Fig 3. Concentration dependence of the induction of HK binding sites by BK. HUVEC were incubated with BK in concentrations from 0.1 nmol/L to 1 mol/L for 3 hours at 37°C. Specific binding of [125I]-HK (5.3 nmol/L) was determined. Each bar represents the mean ± SEM of three experiments.
Therefore, we investigated the possibility that BK may regulate the expression of its endothelial cell binding sites for its parent proteins, HK and LK.

Binding of HK. BK caused a time- and concentration-dependent increase in the binding of HK to HUVEC. Increased binding of 125I-HK to HUVEC, which was first observed 60 to 90 minutes after the addition of BK (10 nmol/L) (Fig 2A), reached a peak between 2.5 and 3 hours after stimulation (178.1% ± 4% increase in the total number of HK binding sites over control cells (15.2 ± 0.15 × 10^5 sites/cell); P < .005 v control; n = 3) with no change in receptor affinity (kd = 42.3 ± 3.2 nmol/L). When HUVEC were preincubated with the angiotensin converting enzyme inhibitor, enalapril, the minimal concentration of BK necessary to upregulate kininogen binding sites was decreased 100-fold to 10 pmol/L (data not shown). These data also suggest that BK, rather than its proteolyzed fragments, upregulate kininogen expression on HUVEC.

Binding of LK. BK also stimulated the binding of LK to HUVEC. The increase in LK binding after addition of BK followed a similar time course as with HK. The peak increase (178.5% ± 5% binding to BK stimulated HUVEC, n = 3, P < .025 v unstimulated cells) occurred 3 to 4 hours after the addition of BK. Binding of LK, like HK, returned to control levels by 6 hours (Fig 2B). Scatchard analysis of LK binding to HUVEC stimulated by BK for 3 hours indicated that there was a 57.2% ± 4% increase in the total number of LK binding sites over control cells (15.2 ± 0.15 × 10^5 sites/cell; P < .005 v control; n = 4), comparable to that seen with HK, with no change in receptor affinity (kd = 39.4 ± 6 nmol/L).

Mechanism of induction of HK receptors by BK. We next investigated whether the induction of HK binding sites by BK was mediated through B₁ or B₂ receptors. HK binding to HUVEC was stimulated to the same extent by 10 nmol/L BK or the B₁ receptor agonist, Des-Arg⁹-bradykinin (D-BK¹) (Fig 4A). Costimulation with both agonists did not potentiate the effect. The B₁ receptor antagonist, Des-Arg⁹ [Leu²]-bradykinin (D-BK³), present in 100-fold molar excess, had no direct effect on HK binding to unstimulated HUVEC, but partially inhibited the capacity of BK to stimulate HK binding (42% of the level seen with BK stimulation alone). A 100-fold molar excess of a B₂ receptor antagonist, D-Arg³, [Hyp³, Thr³, D-Tic, Oic⁶]-bradykinin (HOE140), which also had no effect alone on HK binding to HUVEC, did not significantly inhibit BK-induced binding of HK. The addition of both antagonists did not further augment the inhibition produced by the B₁ receptor antagonist alone (D-BK³) (41% of the level seen with BK stimulation alone) (Fig 4A).

Investigations were next performed to determine whether BK increased the number of HK binding sites by activating protein kinase C (Fig 4B). Preincubation of unstimulated HUVEC with the PKC inhibitors, H7 (10 μmol/L) and sphingosine (1 μmol/L), did not alter the binding of HK significantly (77.8% ± 8.1% and 93.5% ± 3.6% of control, respectively) (Fig 4B). However, preincubation of HUVEC with H7 and sphingosine completely blocked the induction of HK binding sites by BK (155.1% ± 20.0% v 107.3% ± 10.4% and 91.2% ± 3.9% v 81.1% ± 3.9%, n = 3; P < .05, BK v BK + H7 and P < .005, BK v BK + sphingosine, respectively). In contrast, preincubation with HA1004, a weak inhibitor of PKC with a chemical configuration close to H7, had no inhibitory effect on BK-induced HK binding (Fig 4B). These findings suggest that the induction of HK binding sites on HUVEC by BK may be mediated, in part, by stimulation of intracellular PKC.

To investigate this hypothesis further we studied the effect of the PKC activator, PMA, on the expression of kininogen binding sites.
BRADYKININ REGULATES KININOGEN BINDING

Fig 5. Time course of PMA induction of HK-binding sites. HUVEC were incubated with control media or media containing PMA (10 nmol/L) for various periods of time and the specific binding of 125I-HK (8.3 nmol/L) was determined. Each point shown represents the mean ± SEM of six experiments.

Binding of HK and LK to HUVEC Stimulated With PMA

Binding of HK. PMA (10 nmol/L) stimulated an increase in HK binding sites on HUVEC, first detected 30 minutes after addition of the agonist (Fig 5). Binding reached maximum 3 hours after PMA was added (156.1% ± 14.1% binding to PMA-stimulated vs control cells; P < .001; n = 6), after which binding returned to basal levels by 5 hours and remained stable over the next 19 hours (data not shown). The induction of HK binding sites by PMA was concentration-dependent. The increase in binding sites became detectable when PMA was added at a concentration of 0.5 nmol/L (Fig 6) and reached a plateau at 1 to 100 nmol/L PMA. Higher concentrations of PMA were associated with cell loss. Scatchard analysis of HK binding at equilibrium to HUVEC preincubated with PMA for 3 hours indicated a 45.5% ± 5.6% (P < .005; n = 3) increase in the number of binding sites (14.9 ± 0.1 ∙ 10^5 sites/cell) with an affinity similar to control cells (kd 53.3 ± 3 nmol/L).

The induction of HK receptors by PMA was mediated, at least in part, by activating PKC. Mezerein, phorbol 12,13 didecanoate (P1), and PMA itself, each of which activates PKC, stimulated HK binding to a similar extent (Fig 7A). Structurally related phorbols, phorbol 12-myristate 13 acetate 4-O methyl ether (P2) and 4α phorbol 12,13 didecanoate (P3), which do not activate PKC, were inactive (Fig 7A). Preincubation of HUVEC with H7 or sphingosine inhibited the induction of HK binding sites by 10 nmol/L PMA (149.3% ± 2.2% binding with PMA alone v 115.1% ± 2.6% binding with PMA + H7, and 112% ± 4.0% binding with PMA + sphingosine), while HA1004 had no inhibitory effect (Fig 7B). Costimulation of HUVEC with PMA (10 nmol/L) and BK (100 nmol/L) were not additive (160.1% ± 13.5% after PMA + BK v 149.3% ± 2.2% after PMA alone) (Fig 7B). When HUVEC were preincubated in media containing PMA for 24 hours, a situation in which PKC is downregulated, neither BK, D-BK1, nor PMA alone were able to induce HK binding sites above control levels (102% ± 5%, 107% ± 3%, 98.3% ± 10%, respectively, v control; n = 3) (Fig 7B).

Binding of LK. Studies were next performed to determine if the upregulation of LK binding sites by BK was also mediated through activation of PKC. Unexpectedly, the binding of 125I-LK to HUVEC was not stimulated by PMA in three separate experiments, even in the presence of optimal concentrations of Zn^{2+} (data not shown). Therefore, the binding of 125I-LK, 125I-HK, and 125I-LC was compared in the same experiment (Fig 8). PMA (10 nmol/L) caused a transient increase in the binding of both HK and LC to HUVEC, with peak binding occurring between 2.5 and 4 hours, whereas
the binding of LK was not increased at any of the times studied (Fig 8).

To investigate the basis of this difference between the binding of HK and LK to PMA-stimulated HUVEC, studies were performed to determine if divalent cations other than zinc might affect the binding of LK to control or PMA-stimulated HUVEC. The effect of varying concentrations of Ca\(^{2+}\) on HK and LK binding to unstimulated and PMA-stimulated HUVEC was investigated. Addition of calcium ion over a range from 0 to 2.0 mmol/L had no influence on HK or LK binding to unstimulated HUVEC; calcium values greater than 2.0 mmol/L inhibited binding of both ligands. \(^{125}\)I-LK binding to HUVEC preincubated with BK was independent of added calcium (166.6% ± 3% binding in the presence of calcium vs 163.1% ± 5.6% binding in its absence) (Fig 9A). In contrast, PMA stimulated \(^{125}\)I-LK binding in the presence, but not in the absence, of exogenous Ca\(^{2+}\) (179.8% ± 3% vs 97.2% ± 5% binding in the presence and absence of calcium, respectively; \(P < .005; n = 3\)) (Fig 9A). A small additive effect was also noted when HUVEC were costimulated with PMA and BK in the presence of calcium (205.2% ± 7% binding for BK + PMA vs 166.6% ± 3% binding for BK alone and 179.8% ± 3% binding for PMA alone). Additional studies were performed to determine if PKC was involved in the calcium-dependent induction of \(^{125}\)I-LK binding sites by PMA (Fig 9B). Sphingosine and H7 alone induced a slight increase in LK-binding sites in the presence of calcium. However, the induction of the calcium-dependent binding sites for \(^{125}\)I-LK by PMA (10 nmol/L) was only partially downregulated by the PKC inhibitors H7 and sphingosine (179.8% ± 3% over control PMA alone vs 139.4% ± 5% and 146.3% ± 5% for PM + H7 and PMA + sphingosine, respectively; \(P < .05, n = 3\)). These studies suggest that induction of LK binding sites by PMA in the presence of calcium may be mediated by additional intracellular pathways as well as by PKC.

Because the results of the studies cited above (Fig 1 and Table 1) suggest that LK and HK as well as both of the isolated chains of HK appear to bind to a common site on HUVEC, we then determined whether calcium was also an essential cofactor for the induction of binding sites for \(^{125}\)I-HC by PMA, as observed for \(^{125}\)I-LK. BK stimulated the binding of \(^{125}\)I-HC in the absence of added calcium (Fig 10). In contrast, binding of additional \(^{125}\)I-HC, like LK, to PMA-stimulated HUVEC, required exogenous calcium (Fig 10).

DISCUSSION

These studies indicate first that HUVEC express binding sites for LK as well as for HK. Several findings suggest that a single receptor may bind both molecules to the surface of
unstimulated HUVEC, as has been previously suggested for human platelets. Both ligands bind with similar affinity to the same number of sites (Fig 1), both require zinc for specific binding (Table 1), and each native kininogen inhibits the binding of the other with a similar affinity. The latter result is consistent with the proposed involvement of the cell binding region on domain 3 of their common HC.

However, our data also suggest that there appear to be at least two domains on HK molecule and one on LK that are involved in the binding to HUVEC, similar to observations made previously on platelets. This interpretation is supported by the finding that the isolated light and heavy chains of HK bind specifically to HUVEC. The observation that the isolated light chain of HK does not completely inhibit the binding of native HK or LK (Table 1) may reflect a loss of a preferred three-dimensional structure required for optimal binding which is retained in the native molecules. An alternative explanation is that the putative kininogen receptor recognizes two independent sites on HK, and that LK and to a lesser extent the isolated chains of HK stearically block the recognition of the remaining portions of the molecule. The data also do not allow us to distinguish between two potential models for the kininogen receptor itself, ie, that the receptor consists of two independent domains, each of which interact with a complementary independent region on HK, or that the receptor consists of a single domain that recognizes a three-dimensional structure formed through an interaction between at least two portions of the HK molecule. In accord with either model, the important structural features that permit kininogens to bind to its receptor appear to be preserved in LK but are only partially retained by the isolated light and heavy chains of the HK molecule.

The second conclusion from these studies is that BK stimulates the expression of the putative kininogen receptor for both of its parent proteins. BK induced a comparable increase in the binding of HK and LK compatible with induction of a single common receptor (Fig 2). The increase in binding of each radioligand was observed only after a delay (2 to 3 hours) that could be consistent with a requirement for either protein synthesis or redistribution of an internal pool of binding sites to the cell surface. Further study will be required to distinguish between these possibilities. A second, unexpected feature of BK's induction of kininogens' putative receptor was the apparent transient nature of the increase. After a 70% to 80% increase in the number of binding sites at 2 to 3 hours, binding returned to basal levels by 6 hours and remained stable over the next 19 hours. The mechanism underlying the transient expression of the putative receptor is unknown, but could be explained by internalization or shedding of kininogen receptors, or...
by the delayed induction of a counter-regulatory intracellular pathway.

Stimulation of kininogen receptors by Des-Arg⁹-bradykinin, a B₁ agonist, followed the same time course seen after addition of BK (Fig 4A). Moreover, BK and Des-Arg⁹-bradykinin stimulated expression of HK binding sites to the same extent. Because our experiments were performed in the presence of fetal calf serum, it is possible that this B₁ agonist was generated by proteolysis of BK in serum and accounts for all the stimulatory activity. However, the B₁ antagonist Des-Arg⁹[Leu⁸]-bradykinin only partially blocked the induction of HK binding sites by BK (Fig 4A). A B₂ antagonist, Des-Arg[⁴-Hyp, Thr⁵, D-Tic, Oic⁸]-bradykinin, caused minimal inhibition and added little to the inhibition caused by Des-Arg⁹[Leu⁸]-BK (Fig 4A). Because the B₁ receptor antagonist did not cause complete inhibition, it is possible that additional heterogeneity exists among BK receptors including a receptor subtype not fully influenced by these BK receptor antagonists.⁹

The induction of kininogen binding sites on HUVEC by BK appears to be mediated, at least in part, by activation of PKC. PMA also stimulated HK and LC binding to HUVEC to the same extent and with the same kinetics as receptor induction by BK. Moreover, phorbol 12,13 didecanoate, which activates PKC, stimulated HK binding to a similar extent as PMA, while the structurally related phorbols, phorbol 12-myristate 13 acetate 4-0 methyl ether and 4α phorbol 12,13 didecanoate, which do not activate PKC, did not stimulate binding (Fig 7A). Furthermore, receptor induction by BK was almost completely inhibited when HUVEC were preincubated with either H7 or sphingosine, but not HA1004 (Fig 4B). Taken together, it is unlikely that BK upregulated kininogen binding primarily through cyclic adenosine monophosphate and cyclic guanosine monophosphate-dependent kinases. However, the possibility that sphingosine may inhibit by blocking diacylglycerol and Ca²⁺/calmodulin-dependent kinases has not been totally excluded.⁹
BRADYKININ REGULATES KININOGEN BINDING

The third conclusion from these studies is that the kininogen binding site induced by PMA differs from that found on unstimulated or BK-stimulated HUVEC. Specifically, binding of LK and HK to HUVEC stimulated by BK does not require added calcium (Fig 2), and PMA stimulated the binding of HK (and its purified LC) in the absence of calcium (Fig 8). PMA stimulated the binding of LK and the HC of HK only in the presence of added calcium (Figs 9 and 10). There are two possible explanations for these results. One possibility is that PMA stimulates intracellular pathways in addition to PKC that modify the kininogen receptor. This may generate or expose a calcium-modulated domain on the receptor itself, or a novel protein that recognizes a region of the receptor modified by PMA. Clarification of the two hypotheses must await the isolation of the receptor(s) for the kininogens.

Assuming that BK induces expression of HK/LK receptors in vivo, it is likely that these receptors would be saturated with ligand at plasma concentrations of reactants. Induction of HK/LK receptors on the cell surface could initiate a positive feedback system that would lead to the production of additional BK by the kallikreins at sites of inflammation. However, because binding of kininogens to HUVEC has the same effect as binding to platelets, induction of additional receptors may serve to retard the liberation of additional BK and thus limit its effects on blood pressure, inflammation, permeability, and pain. Additional experiments are required to determine how the additional kininogen receptors modulate the production of BK as well as other known effects of kininogens.

ACKNOWLEDGMENT

We appreciate the aid of Drs. Frank Meloni and Stella Amenta (Temple University School of Medicine, Philadelphia, PA) in the purification and preparation of the light and heavy chains of HK. We thank the nursing staffs of the Departments of Obstetrics and Gynecology at Delaware County Memorial Hospital and Pennsylvania Hospital for their assistance in procuring umbilical cords. We also thank Rena Finko for her tireless efforts in cell culture.

REFERENCES

10. Meloni FJ, Gustafson EG, Schmaier AH: High molecular weight kininogen binds to platelets by its heavy and light chains and when bound has altered susceptibility to kallikrein cleavage. Blood 79:1233, 1992

