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Abstract

The regulation of biological networks relies significantly on convergent feedback signaling loops that render a global

output locally accessible. Ideally, the recurrent connectivity within these systems is self-organized by a time-dependent

phase-locking mechanism. This study analyzes recurrent fractal neural networks (RFNNs), which utilize a self-similar

or fractal branching structure of dendrites and downstream networks for phase-locking of reciprocal feedback loops:

output from outer branch nodes of the network tree enters inner branch nodes of the dendritic tree in single neurons.

This structural organization enables RFNNs to amplify re-entrant input by over-the-threshold signal summation from

feedback loops with equivalent signal traveling times. The columnar organization of pyramidal neurons in the

neocortical layers V and III is discussed as the structural substrate for this network architecture. RFNNs self-organize

spike trains and render the entire neural network output accessible to the dendritic tree of each neuron within this

network. As the result of a contraction mapping operation, the local dendritic input pattern contains a downscaled

version of the network output coding structure. RFNNs perform robust, fractal data compression, thus coping with a

limited number of feedback loops for signal transport in convergent neural networks. This property is discussed as a

significant step toward the solution of a fundamental problem in neuroscience: how is neuronal computation in separate

neurons and remote brain areas unified as an instance of experience in consciousness? RFNNs are promising candidates

for engaging neural networks into a coherent activity and provide a strategy for the exchange of global and local

information processing in the human brain, thereby ensuring the completeness of a transformation from neuronal

computation into conscious experience.
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1. Introduction

In classical neural networks, logical AND

operations follow the MacCulloch-Pitts rule: a

dendritic input that provokes a particular thresh-

old voltage in or close to the somatic region of a

neuron results in the generation of an action
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potential, and thus the transduction of an output
signal to the downstream network (Haykin, 1994

Koch, 1999). Most recently, it has been found that

dendritic trees are endowed with efficient mechan-

isms to counteract the attenuation of input signals

traveling down to the somatic region (Magee and

Cook, 2000; Spruston, 2000). Hence, the strength

of a dendritic input at the somatic region is

independent of the site of its injection within the
dendritic tree. This principle allows for the phase-

dependent amplification of input signals: they can

only contribute to an over-the-threshold summa-

tion if they arrive in the somatic region at the same

time. Accordingly, their time-of-arrival in the

dendritic tree is reciprocally correlated to the

distance of their injection site from the somatic

region. Distal signals that arrive earlier are inte-
grated with proximal signals that arrive later.

Although this mechanism efficiently amplifies

signals that are in phase, it inevitably destroys

information that may have been encoded in their

temporal and spatial distribution within the den-

dritic tree: spike trains arriving at different synap-

tic sites are reduced to a single action potential

that departs from the neuron. In a convergent
network, this will ultimately result in a tremendous

loss of information. This loss can be avoided if the

output from a single neuron is fanned out into a

divergent downstream network, the signal distri-

bution of which ‘reconstructs’ the information that

has been encoded in the original dendritic input. A

reconstruction of information can be achieved if

the spatio-temporal distribution of action poten-
tials within a network (neural network activity) is

correlated with that of dendritic input by a

particular connectivity between network and den-

dritic tree. Ideally, this connectivity should per-

form data compression for sparse encoding with

minimal loss of information. Data compression

compensates for a reduced number of transduction

channels in convergent networks and allows for
reconstruction of the original data set.

Functional MRI and EEG have shown that

cognitive processes are organized in specialized

areas or modules that are distributed throughout

the brain (Adcock et al., 2000; Greene et al., 2001;

Zeki, 2001). The neuronal computation of cogni-

tive processes in remote brain areas, however,

raises the question of how the results of these
computations are integrated as an instance of

experience in human consciousness. The solution

of this dilemma demands for a mechanism that

fans out a local input into a global neuronal

network and, on the other hand, makes a global

network output accessible as local input. A

potential solution can be found in a neural net-

work with alternating convergent and divergent
activity. This concept underlies recurrent neural

networks that have been intensively studied by

Hopfield, Tononi, and Edelman (Hopfield, 1982;

Sporns et al., 1991). In particular, thalamo-cortical

loops have been discussed as ‘global workspace’, in

which consciousness arises (Baars, 1997). The

output of the global network activity is back-

looped onto single neurons within a network, and
thus locally accessible. Recurrent connectionist

networks, however, leave important questions

open: How is a recurrent network correlated with

the natural architecture of the brain? How is the

recurrent dendritic input phase-locked with the

global output? How is the information that is

encoded in this output compressed into a limited

number of feedback channels? How is the com-
pressed information converted into a complete

data set for conscious experience? And as a final

challenge posed by these network models: do we

need a single master neuron that receives the

complete network output in order to generate

consciousness?

These are the questions we will approach in the

following discussion. A coding pattern will be
described as spatio-temporal distribution of ad-

dress registers with a particular topology. These

address registers are correlated with the location of

excited synapses (active dendritic spines) or firing

neurons (active neurons) within a network. Our

working hypothesis arises from the assumption

that there is a topological operation that iteratively

maps the downscaled version of a global coding
structure onto each part of a neuronal network.

The topology generated by a contraction mapping

operation is termed self-similar or fractal (Barn-

sely, 1993; Mandelbrot, 1983; Peitgen et al., 1992).

In a self-similar structure, there is a particular

relationship between the number of sub-structures

(or pieces) m and their size reduction r :
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D� log(m)=log(1=r);

D�Hausdorff dimension (1)

A self-similar structure is called fractal if D

exceeds the topological dimension. For example, a

simple two-dimensional square is self-similar be-

cause a partitioning into four (�/m ) equal pieces

always reduces the side length of one piece by r�/

1/2. A square, however, is not fractal because D�/

2 (�/log(4)/log(2)), and thus identical to the
topological dimension. A seacoast, on the other

hand, is self-similar and fractal because D of a

one-dimensional coastline is usually equal to 1.2

(Mandelbrot, 1983). The topological advantage of

fractals emerges from the optimized covering of a

higher-dimensional space with a lower-dimen-

sional structure, e.g. filling of a tissue (two- or

three-dimensional) with branched, one-dimen-
sional cellular extensions (e.g. dendrites).

You may zoom into a fractal and you will find

the same structure at all scales. This idealized

topological operation will be applied to two

scaling levels within a neural network. The spatial

and temporal distribution of action potentials as

neuronal network output will be mapped as

recurrent signaling input onto the synaptic sites
within the dendritic tree of each neuron. This

connectivity allows for self-similar coding: the

activation pattern within the dendritic tree is a

downscaled version of the global network output.

We hypothesize that this network model, which

will be termed ‘recurrent fractal neural network

(RFNN)’, arises naturally from the architecture of

the brain, self-organizes phase-locking of global
output with recurrent local input, efficiently com-

presses information by encoding of intrinsic self-

similarity, and engages remote brain areas into a

coherent activity without convergence onto a

single center of consciousness. We will see that

RFNNs efficiently combine recurrent connection-

ist networks with temporal and dendritic encoding.

This type of encoding has been suggested to
underlie conscious experience (Orpwood, 1994;

Woolf, 1999). We will also apply principles of

fractal organization by RFNNs to sub-neuronal

structures. After all, consciousness will require a

molecular substrate. In Section 3, we will discuss

that the topological concept that underlies the

generation of fractals reconciles a first-person
perspective on the unity of mind with a reduc-

tionist approach that dissects the brain into single

computational units.

2. Discussion

2.1. RFNNs emerge naturally from the architecture

of the brain

The neuronal architecture, in particular dendri-

tic and axonal branching, has often been described

as self-similar or fractal (Caserta et al., 1995;

Cannon et al., 1999; Porter et al., 1991). Although

these structures are not ideal fractals in a strict

topological sense (their fractal dimension may

vary within a single neuron), we will discuss that
their intrinsic structural organization shows char-

acteristics of fractals that will naturally sustain an

RFNN. Fig. 1A shows the columnar organization

of the mammalian neocortex. The dendritic and

axonal architecture of pyramidal neurons within

the layers III and V can be described as tree-like

structures. Fig. 1B shows that these neuronal trees

may have direct or inverse polarity as determined
by the branching progression: dendritic branches

and axonal (network) branches become succes-

sively shorter or longer (direct polarity), or one

type of branches becomes shorter whereas the

other one becomes longer (inverse polarity). The

task of neuronal trees with direct or inverse

polarity is to collect (dendrites) and to distribute

(axons) signals while economically covering a
maximum of space with a minimum of overlap-

ping. Hence, optimized branching follows the

principle of fractality (Mandelbrot, 1983; Turcotte

et al., 1998): the number m of dendritic nodes ni is

inversely correlated to the reduction r of branch

length li , which can be described by Eq. (1). The

self-similarity or Hausdorff dimension D has been

found to range from 1.5 to 1.9 for the projections
of natural neurons, indicating that neuronal trees

with a topological dimension of one (branching)

are indeed fractals (Caserta et al., 1995; Cannon et

al., 1999).

Fig. 1C shows a model neuron with D�/1.73

that has been generated by an iterated linear affine
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transformation: (i) a linear translation of each new

branching point by the rectangular coordinates xn ,

yn of the preceding branch (with its branching

point as origin of the coordinate system); (ii)

rotation of each new branch by multiples (k�/1,

2) of 1208 (�/a); and (iii) downscaling of the

branching length by a reduction factor of r�/0.67.

It should be noted that this type of transformation

operation arises naturally from biological growth

processes with branching that follow a scaling law.

These branching processes have been described as

L (Lindenmeyer) or cellular automata systems.

Fig. 1. Morphology and connectivity of RFNNs. (A) Principle of columnar organization of pyramidal neurons in neocortical layers I

(cortex surface) to VI (cortex inside). Input Ii , from layers I or II is collected by apical dendrites of neurons Ni , in layer III, which

process and distribute this input to neuron N0 in layer V. Reciprocal feedback loops from N0 in layer V to Ni in layer III are

hypothetical. (B) Different connectivities within RFNNs. (C) Model neuron N0 that receives recurrent input from Ni . The branching

mode and progression is fractal with inverse polarity (dendritic branches become successively shorter, whereas network branches

become longer), the feed back connections are reciprocal (outer branches of the dendritic tree receive recurrent input from inner

branches of the network tree). Note, that the dendritic tree in C is equivalent to that in layer V of B.
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They yield equivalent fractal structures that are
derived from the following operation for iterated

linear affine transformation (Mandelbrot, 1983;

Peitgen et al., 1992):

xn�1

yn�1

� �
�r � coska �sinka

sinka coska

� �
� xn

yn

� �
�

xn

yn

� �
(2)

In fractal trees, Eq. (1) and Eq. (2) can be

combined by D according to:

D� log(a)=log(1=r) (3)

with a , number of k or number of branches/node,

in our model a�/2 (Fig. 1C).

Fig. 1C shows that this fractal tree-like structure

will satisfy the condition of reciprocal signal re-

entry. A distal axonal node Nj is back-looped to a

proximal dendritic node ni and vice versa. For

example, N6 is back-looped to n1, whereas N1 re-
enters the dendritic tree at n6. Note, that the term

‘node’ is meant in a broader sense than just the

branching point: ni or Nj are individual addresses

within a tree. This may be a dendritic spine that is

located within a particular branch, or a neuron

along one branch of a neural network. Within a

dendritic tree that shows successively shorter

branches, the number of spines per branch is
inversely correlated to the distance from the

somatic region and allows for the recruitment of

more synaptic input per branch from a more

proximal location. However, we will simplify this

model by assuming that the initial, perisomatic

branches are not included because of their sparse

input, which has often been found to be inhibitory

(Megias et al., 2001). Now suppose, that with fast
axonal (�/100 m/s) and relatively slow dendritic

(�/1 m/s) signal transport, the total traveling time

for reciprocally connected feedback loops is the

same (Agmon-Snir and Segev, 1993; Koch, 1999;

Stuart et al., 1997). A distal input arrives earlier,

but takes more time to travel down to the somatic

region, whereas a proximal input arrives later, but

has a shorter traveling time within in the dendritic
tree. In RFNNs, proximal and distal input arrives

simultaneously at the somatic region and can be

integrated for action potential generation.

Fig. 1B and C show the key feature of RFNNs:

an address register of Nj neurons within a network

is mapped reciprocally onto a downscaled register

of ni dendritic nodes. Thus, the fractal architecture
of an RFNN naturally sustains a scale-invariant

coding structure: the global coding output at a

larger scale (network) is mapped onto a local

access site at a smaller scale (dendritic tree). Fig.

1B also shows alternative models that fulfill the

reciprocity and downscaling criterion, and hence

would sustain a scale-invariant coding structure.

The non-fractal (and not self-similar) tree with
equal branch lengths, however, will not cope with

optimized space filling due to overlapping branch-

ing. A special case is the self-similar but non-

fractal tree, the branching of which proceeds with

a reduction factor that is the exact inverse of the

branching number, e.g. r�/0.5 and m�/2 (D�/

1.0). This tree structure compensates for less

optimal space filling by establishing full recipro-
city: the number of output loops per network

branch will not exceed the number of input loops

per dendritic branch. A fractal tree does not show

full reciprocity because the sum of the lengths of

all branches at any particular step up or down the

tree will be different from the sum of other steps. It

is quite possible that nature has found a compro-

mise between optimal space filling and reciprocity
in RFNNs.

Which architecture of the brain shows charac-

teristics of fractal trees and may be a candidate

substrate for RFNNs? Most recently, the evalua-

tion of connectivity in cortical columns of pyr-

amidal neurons in the neocortical layers III and V

has shown that layer V projects a limited number

of axons to layer III, but receives a 10-fold larger
number of back-projections from this layer

(Thomson and Bannister, 1998). Although there

is no direct proof that these projections are

connected as feedback loops, they fulfill the

structural characteristics to sustain an RFNN.

As shown in Fig. 1A, the neurons of layer V

may fan out their action potentials to layer III

(divergent phase) and collect the neuronal output
from this layer as recurrent input in their dendritic

trees (convergent phase). A signal from layer V

could be transduced via fast axonal transport to

layer III, back-looped, and integrated with other

recurrent input in the dendritic trees of layer V.

Fig. 1A shows that this network organization is

consistent with the tree structure of pyramidal
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Fig. 2
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neurons and the columnar dimensions within the
mammalian neocortex. It also indicates that layer

III neurons are equivalent to the downstream

network of an RFNN, which is consistent with

the experimental observation that they have a

higher probability to be connected to neighboring

neurons than those in layer V (Thomson and

Bannister, 1998). Layer V neurons appear not to

receive direct input from superficial layers but are
excited by layer III neurons that may receive input

via their apical dendrites in layers I or II.

2.2. RFNNs self-organize phase-locking of

feedback loops

Neuronal networks are known to spontaneously

initiate oscillations at frequencies between 10 and

100 Hz (Jefferys et al., 1996; Menendez de la Prida

and Sanchez-Andres, 2000). This network activity

has been ascribed to coupling of neurons by phase-

locked loops (PLLs) with each neuron acting as

voltage controlled oscillator (VCO, Hoppensteadt,
1989). Within a certain frequency range, VCOs

with feedback loops can compensate for a phase

shift and pull the system back to its center

frequency (Best, 1999). Fig. 2A shows that recur-

rent neuronal networks fulfill most criteria of

PLLs with phase (or coincidence) detector (PD),

loop filter (LF), and VCO (Borisyuk and Hoppen-

steadt, 1998). The exact location of these elements
within a neuron is a matter of further investiga-

tion. Distal dendrites, however, will certainly act

as PDs, whereas the functional equivalent of LFs

and VCOs may be located at a site that is more

proximal to the somatic region of the neuron. In

principle, a PLL works well within the range of

dv/dt B/v2 for a frequency offset dv from the

center frequency v (Best, 1999). The caveat of a
neuronal PLL, however, is its dependence on the

broad frequency band of recurrent signals picked

up by dendrites. A computer simulation with v set

to 50 Hz and spike bursts of dv�/1000 Hz for

dendritic input results in a periodic fluctuation of

the PD-output around v (Fig. 2B). A neuron

could not phase-lock a signal if it works like a

completely analog PLL. However, over-the-

threshold summation of incoming post-synaptic

potentials and threshold-controlled action poten-

tial generation endows the neuron with an analog

digital converter (ADC) that chops the PLL

fluctuation into discrete spikes (Fig. 2B). Vice

versa, broadening of a distinct synaptic input while

traveling down the dendritic tree converts a digital

into an analog signal. As shown in Fig. 2B and C,

the output voltage for over-the-threshold summa-

tion relies critically on the detector gain KD

(voltage increase/phase) in the dendritic tree. In a

neuronal PLL, an action potential is generated if a

minimum number of dendritic spikes are in phase,

resulting in rapid voltage increase to the depolar-

ization threshold. It has been found that a

Hodgkin�/Huxley neuron that operates as ‘inte-

grate-and-fire’ unit indeed responds with a rapid

voltage gain to incoming dendritic spikes at high

frequency (Koch, 1999; Koch and Segev, 2000).

This observation is consistent with the computer

simulation of PLLs as in Fig. 2, and has led to the

idea that neuronal networks may function like

frequency-modulated VCOs in FM-radios (Hop-

pensteadt and Izhikevich, 1998).

Can a neuronal PLL drive an RFNN by the

recruitment of a particular network, the neurons

of which feed the PLL with dendritic input spikes

that are in phase? The following analysis will show

that a recurrent network with multiple feedback

loops will phase-lock a particular RFNN by the

recruitment of loops with reciprocal connectivity.

Fig. 3 shows a connectivity matrix for RFNNs

with dendritic input (ni) and neuronal output (Nj )

addresses represented as rows or columns, respec-

tively. The matrix values are the signal-traveling

times between Nj and any N0 or vice versa, which

Fig. 2. Simulation of a neuronal PLL. (A) PLL circuit model for neuron N0 in an RFNN; PD, phase detector; LF, loop filter; VCO,

voltage controlled oscillator; KD, phase detector gain; ADC, analog digital converter. (B) Linear PLL computer simulation in passive

lag mode (program PLL simulation V1.1, Best Engineering, is commercially available through Best, 1999); PLL supply voltage �/0.06

V, �/0 V; KD, variable, 0.01�/0.10 V/rad; PD saturation voltage, �/0.06 V, �/0.01 V; LF time constants t1, 0.005 s, t2, 0.010 s; VCO gain

K0, 1300 1/s V; VCO saturation voltage �/0.06 V, �/0.01 V. (C) Dependence of PD output from KD. An action potential is generated if

a certain threshold voltage (arrow in Fig. 2) is reached (not simulated).
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will rely on the particular dendritic node or spine
ni that has been chosen for signal re-entry at N0.

For example, the neuron N1 may be connected to

N0 via n1 or n3. An action potential generated at

N1 will thus take 1 ms (via n1) or 4 ms (via n3) for

traveling to the somatic region of N0. If in phase

with other signals it will contribute to the genera-

tion of an action potential at N0, which is

distributed to the downstream network and arrives
at N1 to N4 at times indicated in the second

matrix. At this point, we do not make a difference

between traveling through network interneurons

or direct connection of N0 to Nj via axonal

branching of N0 (Fig. 3B). The summation of

traveling times for signal transport from Nj to N0

and N0 to Nj gives the total traveling times for all

possible feedback loops (resultant connectivity
matrix). Signals are in phase if the total traveling

times for looping are identical. The stable connec-

tions are the ones that allow for over-the-threshold

summation at N0. In our example, we have set the

number of dendritic input signals to four in order

to reach a minimum voltage gain for action

potential generation. Hence, four feedback con-

nections will be selected at a looping time of 10 ms,
which results in a coherent network oscillation at

100 Hz (solid lines in Fig. 3B). The other connec-

tions will not be amplified and just continue to

fluctuate randomly or fade out (dashed lines in

Fig. 3B). As shown in Fig. 3A, the final con-

nectivity matrix for stable feedback loops can be

translated into binary x/y -distribution matrices

that denote the addresses of active neurons in the
network and those of active spines in the dendritic

tree (Fig. 3B). Once the network shows coherent

oscillation, the frequency offsets are small and the

PLL can pull the system back to its center

frequency. From this simple example, it can be

seen that RFNNs can stabilize neuronal network

oscillations by self-organized recruitment of reci-

procal PLLs.

2.3. RFNNs compress information by robust

encoding of self-similarity

It has been shown that individual neurons in the

temporal cortex of macaque monkeys respond to

different images with intrinsic self-similarity and

identical complexity, irrespective of their shape,
color, or size (Miyashita et al., 1994). This

observation indicates that neuronal networks

may recognize images by utilizing intrinsic self-

similarity for sparse encoding of a pixel distribu-

tion. Information compression, in particular of

images, is certainly required at some point during

neuronal computation with convergent signaling

pathways. In simple words, a small number of
action potentials should encode a large number of

pixels. This demands for an appropriate transfor-

mation function for sparse encoding of a spatial

pixel distribution. Fractal image compression has

been used successfully in art and information

technology (Barnsely, 1993; Peitgen et al., 1992).

It is based on encoding of shape and contrast by a

linear affine transformation that correlates the
self-similar parts of a picture with each other.

Ideally, this transformation is part of an iterative

functional system that encodes six numerical

parameters for shapes in the x/y -plane (two for

translation, rotation, and size reduction; Peitgen et

al., 1992). Fig. 4A shows how a fractal pixel

distribution can be used for scale-invariant encod-

ing of signal patterns. The matrices show pixel
distributions for Y or triangle-shaped contours

that repeat themselves on two different scaling

levels termed ‘global’ and ‘local’. The transforma-

tion function can be obtained in two ways that are

interconvertible. In the first method, usually

applied for fractal image compression by encoding

of global-to-local self-similarities, a coarse overall

structure is downscaled (in our example 9:1) and
shifted over the image by successive translation

and rotation. A match yields the parameters for a

linear affine transformation that is similar to the

one already used for the generation of fractal tree

structures (Eq. (2)).

The second method is based on the globalization

of a local signal distribution resulting in an

enlarged image with intrinsic self-similarity. The
numerical solution for this globalization can be

achieved by calculation of the Kronecker square

matrix product (M2) that has been derived from

the local signal distribution as shown in Fig. 4A

(Gazale, 1999). In our example, the coarse dis-

tribution of eyes, nose, and mouth constitutes four

input signals that are fed into nine cortical
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Fig. 3. Input�/output analysis for selection of stable signal loops in an RFNN. (A) The left connectivity matrix shows the time that is

required to travel from Nj back to the somatic region of N0 via re-entry at the dendritic node (spine) ni , the matrix in the middle shows

the time an action potential needs to travel from N0 to Nj . The resultant matrix shows the total looping times for any connection

between N0 and Nj . Loops are amplified (value 1 in bottom connection matrix) if they generate an action potential at N0 whereas the

others are attenuated (value 0). The connection matrix can then be transformed into x/y -distribution matrices showing the spatial

coding structure for network (global, layer III) and dendritic (local, layer V) activity. (B) Integration of the matrix model and the

neocortical column architecture into vision coding by an RFNN. A Y-manifold detects the coarse features of a human face (eyes, nose,

mouth) and translates these into an x/y -distribution matrix that activates the network neurons Nj in layer III (global). The global

network activity is back-looped onto the dendritic tree of N0 in layer V (local). The local input is processed by the PLL characteristics

of N0 as described in (A), and the computational result fanned out onto the network until stable signal loops (orbits) are selected.
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columns. Fig. 4B shows that the columns form an

extended RFNN, which results in fractal mapping

of the original input (global 1) onto each column

(local 1). Smaller features of the face, e.g. the pixel

distribution of the lip contour, are fed into one

column (global 2), which gives rise to a down-

Fig. 4
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scaled input map within the dendritic tree of each

neuron (local 2). This dendritic input is super-

imposed with that arising from processing of the

coarse features. The resulting dendritic input (local

3) is now fanned out into the entire array of

cortical columns giving rise to a face-like pictorial

with intrinsic self-similarity (global 3). Each scal-

ing level of an RFNN (dendritic tree, column, or

array of columns) encodes a manifold or trans-

form (e.g. triangle or Y) that can be up- or

downscaled and matched with scale-invariant

features in the image. This process is equivalent

to established methods of image compression

using sets of fractal transforms for feature correla-

tion (Peitgen et al., 1992). In accordance with these

methods, the compressed set of data (e.g. the

triangle or Y-manifold) is not identical to the final

image but contains the entire information for its

reconstruction. This has already been shown to

provide sparse encoding of pictures that are far

more complicated and contain more subtle details

than those in Fig. 4A. Another important feature

of fractal encoding is its robustness and resistance

toward local disturbances, e.g. by signal noise,

which results from a self-similar coding structure

at two scaling levels.

As indicated in Fig. 3B and Fig. 4A, the

response of the networked neurons to particular

features is rather orientation-sensitive, but invar-

iant to size or spatial distance. Interestingly, these

predicted characteristics are similar to those found

in studies that recorded the single-cell responses in

columns of the visual cortex toward stimuli in their

receptive fields (DeAngelis et al., 1999; Dragoi and

Sur, 2000). It has also been shown that the activity

of cortical columns and the spatial integration of

remote areas within the visual field are modulated

by the surroundings of the classical, centered

receptive field. This observation is consistent

with a transformation function that integrates
peripheral and central substructures (Castet and

Zanker, 1999). The characteristics discussed for

the visual cortex have been explained with various

neural network models that are not necessarily

RFNNs (Dragoi and Sur, 2000; Zeki, 2001).

However, RFNNs have additional properties

that facilitate the exchange of global and local

signal processing, which is not shared by models
confined to cortical columns or alternating diver-

gence and convergence within feed-forward net-

works.

2.4. RFNNs make a coherent, global network

activity locally accessible throughout the brain

In the preceding section, we have discussed that

the integration of self-similar features within an

image can be achieved by a meta-coding transfor-

mation function that reduces redundancy by

compression of self-similarity. The Kronecker

square product matrix has been used to generate
a fractal pixel or signal distribution from a local

input. As shown in Fig. 4B, this product matrix is

not just a mathematical curiosity, but represents

the addresses of dendritic input nodes and those of

the neurons participating in the network within

each submatrix. Hence, the signal distribution of

the network is an up-scaled version of the dendritic

input in each of the networked neurons. The
relative positions of the input addresses are

identical and match with the overall, reciprocal

distribution of the neurons (Fig. 4B). These

positions are calculated from a fractal distance

function that scales the distances between two

addresses by a particular scaling factor, i.e. r�/

0.67 (Fig. 1C). Within a single neuron (of neocor-

tical layer V), the input addresses are equivalent to
the location of dendritic spines that are excited by

Fig. 4. Interchange of global and local information processing for sparse encoding of self-similarity. (A) Coarse features of the human

face as shown in Fig. 3B activate a global activity pattern in a column array (bold numbers in matrix). Convergent back-looping onto

the dendritic addresses of N0 in each column gives rise to a fractal matrix, that is equivalent to the Kronecker square product M2 of the

local input matrix (global 1 to local 1). Individual features, e.g. the lip contour, are first locally encoded and then fanned out into the

neuronal network (local 2 to global 2). A summation of local dendritic inputs and the Kronecker square product operation integrate

self-similar features of the coarse and the fine structure, giving rise to a self-similar face pictorial (local 3 to global 3). (B) Full

connectivity between three neocortical columns, which is suggested as computational substrate for A. The complete operation requires

nine columns (not shown).
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incoming action potentials. On a larger scale, they
correspond to active neurons (of layer III) within a

cortical column, but they may also be distributed

over remote areas of the brain.

Further, adjacent or nearby columns may be

connected by shared neurons for recurrent input,

similar to the example for the integration of the

triangle and Y-manifold in Fig. 4A. This would

necessarily entail the harmonic coupling of
RFNNs with the result of a coherent, electrical

network activity. Recently, the recurrent connec-

tivity in rat hippocampal slices has been discussed

to mediate a spontaneous, frequency-dependent

synchronous network oscillation (Menendez de la

Prida and Sanchez-Andres, 2000). The coherent

coupling of neuronal activity has been suggested to

select the neurons that participate in the genera-
tion of consciousness (Singer, 2001). Interestingly,

EEGs monitoring the electrical activity of the

brain have been found to contain a fractal

distribution of spike trains with long-range corre-

lations (Likenkaer-Hansen et al., 2001; Teich et

al., 1997). Taken together, these observations

indicate that a coherent network behavior in the

human brain may arise from fractal coding and
activity patterns that are initiated during conscious

perception.

Coherence has been explained by other network

models without necessarily invoking RFNNs.

Most of these models, however, do not specify

how the firing in a certain phase will transport

information between different parts of neuronal

networks, or in other words, make the global
output accessible locally. In distributed RFNNs,

coherence of networks with shared input neurons

indicates that at least some dendritic input in each

neuron is identical. Hence, coherence of RFNNs

results in the global meta-coding of local informa-

tion, and the local access to its global processing.

This interdependence appears to be a prerequisite

for the integration of distributed information into
an instance of conscious experience.

3. Conclusions: RFNNs and consciousness

RFNNs have been discussed as reciprocal PLLs

with inverse output-to-input address registers.

Ideally, the distance function for single addresses
is fractal and can be used for sparse encoding of

self-similarity, and thus, robust data compression

within a convergent signal flow by contraction

mapping. These characteristics have been shown

to reconcile a network structure with its function,

even if the structure is reciprocal and inverse, but

not ideally fractal. We have also discussed that a

local dendritic input can recruit a downstream
network processing and that the global network

output is readily accessible to each neuron within

this network. In analogy to conventional image

compression, the brain may use fractal data

compression in RFNNs in order to cope with

downscaling of coding patterns in a convergent

signal flow. We have seen that some of these

characteristics can be explained by alternative
network models, but not within the range of

completeness that is offered by RFNNs. In the

following discussion, we will analyze how RFNNs

can reconcile the topology of brain and mind, and

how they may compress information into a

molecular substrate for the generation of con-

sciousness.

To date, modern neuroscience has failed to
explain the emergence of the mind from the

activity of the brain (Chalmers, 1996). This is a

serious setback since it is not very likely that our

understanding of consciousness will be enlightened

substantially by the discovery of novel neurotrans-

mitters or receptors. Consciousness is just not

countable in molecules or genes. We are not even

addressing the problem of qualia or perceptual
experience, we are just naively asking: Where am I

and the world I see and feel in my brain? This

fundamental question has been asked numerous

times throughout the history of human mankind.

Its currently valid version is still the one posed by

the French philosopher Rene Descartes in the 17th

century: (i) if the mind is a physical entity, it must

have a location; and (ii) if it has a location, the
topology of the mind must be embedded into the

structure of the human brain. Descartes was quite

ahead of his (and our) time by recognizing that: (i)

if the mind is a physical event it will arise from

local effects in the brain; and (ii) local effects are

separated in space and time, and therefore, they

cannot account for a simultaneous and holistic
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experience of mental images. It may sound para-
doxical, but Descartes should have stated: ‘I think

thereof I cannot be’, at least not if we seek to

explain consciousness as physical ‘being’ on the

basis of our present knowledge.

Descartes attempted to resolve this paradox by

conceiving the Homunculus concept, a fixed focus

point of consciousness, the location of which he

assumed to be in the pineal gland. Secondly, he
assumed a dualistic view in that the mind as

mental substance is different from the physical

processes affected by it (Chalmers, 1996). These

approaches appear naive from our perspective of

modern neuroscience. The underlying concept,

however, is still valid: (i) a neural network must

be organized in such a way that it renders a

divergent, globalized network processing of infor-
mation locally accessible by a convergent signal

transport; or (ii) as alternative, neuronal units

must share this information at a distance without

exchange by classical signal transport channels.

Current neurophysiological concepts assume

that consciousness emerges from a coherent activ-

ity of neurons observable as 40 Hz gamma

oscillations in the electrical brain activity (Jefferys
et al., 1996; Singer, 2001). This is certainly con-

sistent with the convergence approach, but does

not explain the coding and transition into an

instance of experience that is unified in space and

time. Switching two radios on and off at the same

time does not make them share their private

information if they are tuned onto different

frequency sources. On the other side, popular
unifying field theories of consciousness appear to

thrive on the approach of sharing information at a

distance, in particular by electromagnetic fields

(Lindahl and Arhem, 1994; John, 2001; Searle,

2000). Unfortunately, these models widely over-

look the fact that extracellular field potentials are

physical entities that are as local as neurons

(Triffet and Green, 1988). Besides the conceptual
intricacies arising from the attempt to reconcile

these field models with classical neuronal signal

processing, brain-wide field models do not solve

the binding problem. Information exchange is

faster than with action potential transport, but it

still needs a time-delayed signal transport by an

electromagnetic wave. Imagine two distant radios,

e.g., one located on earth and the other one on the
moon. These radios do not simultaneously receive

the same information even if they are tuned onto

the same frequency source. Escaping this locality

by a field model would require a radical reforma-

tion of physical concepts comparable to observa-

tions in quantum theory, in particular Einstein�/

Podolsky�/Rosen type phenomena (Penrose,

1994). It is just the non-local sharing of informa-
tion experienced from a first-person perspective,

which is irreconcilable with local and private

information processing by distant neurons or

classical field potentials. However, globally dis-

tributed information is locally accessible if the

structure of the whole is encoded in each of its

parts. It is this concept of fractality that makes

RFNNs attractive if we seek to reconcile the
structure of the brain with the topology of the

mind.

In the following analysis we will discuss that the

concept of fractality can be equally useful for a

description of neural networks and the topology of

the mind. As shown in Fig. 5A, we will claim that

single percepts, e.g. the visual objects A and B, are

distributed in a single mind space (or endo-space)
S that has to be reconciled with physical brain

space. Further, we assume that there is a product

space S�/(A�/B) that cannot be resolved into

S1�/A�/S2�/B or else it will be split into sub-

spaces (S1, S2). Imagine the mind would be water

in a jar. If you pour the water into two glasses, the

sub-spaces, you will split the mind. If separate sub-

spaces existed, they would be separately perceived,
which is not the case. The question is: how can S�/

(A�/B) be processed in separate neurons without

being split? We will approach this problem by

assuming that there is a function (f) for which the

following holds: A does not equal B, but f (S1)

equals f(S2). This is possible if S1 contains S2 as

sub-space and vice versa (Fig. 5A, bottom part). In

this case, the distribution of nervous signals onto
separate neurons does not split S�/(A�/B) be-

cause the product spaces f(S1)�/A and f(S2)�/B

are distinct, but contain each other. Is there a

function on S that can do the trick? We have seen

in Section 1 that fractals are topological objects

that fulfill the criterion of containing the whole in

each part. This topology warrants that A (in S1)
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and B (in S2) are distinct, but f (S1) equals f(S2)

because each sub-space contains the other one as a

part. Hence, a fractal product space S�/(A�/B)

could be distributed into separate neurons without

Fig. 5. Fractal topology of the mind. (A) The correlation of an inner space (endo-space) S with two distinct visual objects A or B splits

consciousness into S1�/A and S2�/B if computed with separate neurons and no information exchange. Preservation of an undivided

consciousness demands for a complete exchange of information between any two neurons. This is achieved by contraction mapping

resulting in fractal embedding of S1�/A and S2�/B into each other’s coding structure. (B) Several levels of multi-fractals for

embedding of different visual objects at different times (t) into the personal history of the inner observer. This gives the impression of a

continuous consciousness with a feeling of identity. STM, short-term memory; LTM, long-term memory.
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being split. This may result in a one (observer)-to-
all (information) correlation as experienced in

human consciousness.

Although we do not discuss the physical nature

of perceptual experience, sensation, or emotion

themselves, we will assume that consciousness is

not an independent entity but a quality inevitably

arising from an appropriate physical process

(Chalmers, 1996). The inner observer is not only
aware of outside objects, but does also observe

him/herself. The mind within the brain is self-

conscious. According to the model of RFNNs, this

requires the inclusion of additional information in

a multi-fractal coding structure. As shown in Fig.

5B, the self-awareness of the inner observer as

continuous entity emerges from the confrontation

of the present with the past in a common fractal
space-time. This confrontation may also account

for the conscious experience of sensations with

duration, e.g. the experience of sounds and music.

The integration of one’s personal history in a

multi-fractal coding structure may be required in

order to maintain a feeling of identity: the inner

observer must be fed with one’s memory in each

moment of self-conscious experience. Hence, an
RFNN may generate a multi-fractal, the structure

of which is modulated by one’s personal memory.

The generation of fractally structured memory has

been suggested to underlie cognitive processes and

memory retrieval, and is supported by recent

analyses correlating the probability of learning

with a fractal time series in the electrical brain

activity (Rucker, 1987; West, 2001).
In addition to the previously discussed top�/

bottom line of arguments, we have seen that the

feeding of nervous signals into single neurons will

require the analysis of molecular mechanisms that

underlie the interfacing of physical signaling and

mental experience. Although we are certain that

the world we experience fits into an organ of the

size of a small melon, we feel uneasy about fitting
it into a single cell. Size obviously matters when it

comes to neuronal signal processing. However,

there is no reason to stop at the scaling level of

neuronal cells. Eventually, the transition of physi-

cal effects into mind experience requires a mole-

cular substrate. In RFNNs, this substrate will gain

access to the complete network information only

via synaptic input channels of individual neurons.
Do these channels have the capacity to transmit

the vast amount of information that results in

conscious experience?

Assume that the simultaneous arrival of 5000

synaptic input bytes (5000 active spines in the

dendritic tree) can be turned over with a frequency

of 50 Hz and encodes information with a compres-

sion factor of 20, a factor easily achieved by fractal
image compression (Peitgen et al., 1992). A single

neuron would receive 5 MB per second, an amount

of information that may provide enough high

resolution tif-pictures as experienced in human

consciousness in this period of time. In other

words, a ZIP disk could contain 20 seconds of

consciousness. The compression factor is even

higher by magnitudes (more than 1000-fold) if a
hybrid of fractal and wavelet compression is

applied (Davis, 1998). This type of compression

would enable the encoding of 5 MB tif-images per

second with 100 dendritic spines at a turnover

frequency of 50 Hz. In this respect, we should not

neglect that during continuous perception, the

amount of newly received information per time

frame is relatively low and sudden changes in a
visual scene are often overlooked (change blind-

ness). With changing distance from a visual object,

the self-similarity is already preprogrammed by the

temporal integration of consecutive pictures.

Hence, it appears not to be impossible to compress

the neural network information that underlies the

generation of consciousness into single neurons.

We may also consider that the efficacy of parti-
cular compression methods used for high resolu-

tion imaging of brain activity, e.g. fractal analysis

of EEGs, indicates that the brain itself may rely on

these compression methods for maintaining its

activity during conscious perception (Likenkaer-

Hansen et al., 2001; Nan and Jinghua, 1988).

If consciousness may happen in single neurons,

why is the brain so big? An answer can only be
attempted by assuming that a large amount of the

brain is rather busy with pre- or post-conscious

processing of information and its preparation for

convergent signaling. In other words, the brain is

so big because it needs its computational power to

compress information into single neurons. The

relationship of 10 billion neurons to some hundred
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of single neurons receiving the back-looped in-
formation of RFNNs may just be necessary in

order to increase the number of potential loops,

from which a selection can be chosen to stabilize

signal orbits that entertain a continuous con-

sciousness. Fractal attractors are known to stabi-

lize stochastic and chaotic systems (e.g. hurricanes)

and have been suggested to select robust signal

orbits in the olfactory bulb and the visual system
(Freeman and Baird, 1987; Freeman, 1994).

Hence, they may also be used to channel a signal

flow into single neurons. Each neuron in an

RFNN may be the limit point for a convergent

sequence of signals with the inner observer located

as fixed point where the sequence converges. In a

fractal attractor, the location of the inner observer

can readily and instantaneously switch between
single neurons along with an event stream of

experiences in consciousness. This view is in line

with the ‘global workspace’ model, which assumes

that consciousness is a receiver of a massively

parallel signal sequence with dynamical location

(Baars, 1997). It is also consistent with the

‘holographic paradigm’ in that each part of an

RFNN contains the information of the whole
structure (Gabor, 1968a,b; Longuet-Higgins,

1968; Pribram, 1982). In fact, RFNNs may revive

the discussion on holographic signal processing by

using a fractal signal path to generate a holo-

graphic imprint or record in each neuron of the

network. It has been shown that fractal structures

can be transformed into holographic imprints that

themselves are fractals (Psaltis et al., 1990; Reiter,
1994). In conclusion, RFNNs are compatible or

even equivalent to recent concepts in conscious-

ness research and neural network processing,

however, with the advantage of being naturally

implemented by the intrinsic architecture of the

nervous system.

Once the activity of a neuronal network has

been downscaled into the dendritic tree of single
neurons, the question arises where the bottom line

of data compression is reached. Theoretically,

contraction mapping should be an infinitely iter-

ated process until the information is contained

within a single limit point. This cannot be achieved

readily with RFNNs or any other network theory.

After all, we need to get comfortable with a

particular state of matter that reconciles an
observer singularity with spatially extended neu-

ronal and molecular information processing. On

the molecular level, lattice structures have been

described to self-organize a spatially extended

fractal of orientation or spin states (Mandelbrot,

1983; Schroeder, 1991). It has been found that at

exactly body temperature, the neuronal membrane

undergoes a sharp transition into an ordered,
liquid crystalline lattice. Molecular interactions,

e.g. hydrophobic or van der Waals interactions

between membrane lipids, may be programmed by

incoming synaptic signals that modulate the shape

of a spatially extended, fractal lipid lattice or

microdomain (Bieberich, 2000a). Recently, it has

been found that biological membranes exhibit

requisite characteristics of fractal geometry with
respect to curvature, shape, and internal molecular

organization (Hoop and Peng, 2000; Rabouille et

al., 1992; Sugar et al., 2001). Alternatively, micro-

tubules or other filaments of the cytoskeleton may

also form a lattice structure that can be shaped

into a fractal. This assumption is supported by

recent analyses of their fractal architecture (Dufort

and Lomsden, 1993). In this respect, it should be
noted that neuronal membranes or microtubules

have already been suggested as candidate sub-

strates for consciousness (Beck and Eccles, 1992;

Bieberich, 2000a; Hameroff 2001; Hameroff et al.,

2002; Jibu et al., 1994).

The location of activated dendritic spines may

translate the fractal excitation pattern within the

dendritic tree into an address register for a fractal
membrane or cytoskeleton lattice. In the simplest

case, two spike trains meeting at a branching point

while traveling down to the somatic region may

encode a x /y -distribution matrix for programming

or modulation of spin or orientation states within

a molecular lattice. As discussed in a preceding

section, fractal wavelet compression may encode a

large amount of information by a limited number
of synaptic input, which activates only a small part

of the neuron, e.g. dendritic branches or the

axonal trigger zone. Interestingly, wavelets are

scaled functions that are generated by iterative

functional systems similar to those used for the

generation of fractals (West, 2001). The combina-

tion of wavelets, fractals, and holograms provides
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a whole-in-each-part correlation while avoiding
the idea of brain-wide field states controlling

individual action potentials. Field states that are

deemed important for the generation of conscious-

ness may still exist on a molecular scale, e.g.

electrical field potentials on the neuronal mem-

brane surface that guide the orientation and van

der Waals interaction of lipids within the mem-

brane bilayer (Radhakrishan and McConnell,
1999). In RFNNs, the shaping of a fractal

(membrane, cytoskeleton, or field) lattice within

the dendritic tree or close to the somatic region

may prevent or facilitate signal transduction via

generation of action potentials. Our own, preli-

minary experimental studies have shown that a

molecular template with fractal structure can

stabilize intermolecular binding states better than
a non-fractal structure (Bieberich, 2000b). The

stability of a particular lattice structure, the

molecular interactions of which are guided by its

fractal geometry, may thus control signal trans-

duction, e.g. by modulation of signal attenuation,

slightly shifting the depolarization threshold, or

affecting synaptic vesicle formation and transport.

The activity of a molecular fractal before genera-
tion of an action potential is certainly desired since

it may endow us with the opportunity to affect

signal transduction in dependence on conscious

experience. In conclusion, RFNNs are compatible

with the transformation of neuronal into fractal,

molecular computation. A detailed analysis, how-

ever, will certainly be beyond the scope of the

present study.
It is likely that a theory on interfacing of brain

and mind in RFNNs will reveal itself as a series of

transformations for the contraction mapping of

coding structures at different scales: (i) a reciprocal

connectivity matrix as shown for the selection of

feedback loops (scaling level neuronal network to

dendritic tree); (ii) a fractal coding matrix for the

spatio-temporal distribution of neuronal and mo-
lecular activity (scaling level dendritic tree to

molecular lattice), and (iii) a yet unknown matrix

operation that creates the consciously perceived

world from a molecular activity (interfacing of

molecular and mental activity). This activity may

rely on the formation of particular fractal field or

molecular lattice states in the neuronal membrane

or cytoskeleton. Although highly speculative and
controversial, the respective final matrix operation

may be correlated with the matrix mechanics used

to describe superimposed or entangled quantum

states (Duggins, 2001; Penrose, 1994). A discus-

sion of superposition states in the human brain is

certainly of epistemological value, although their

physical existence has been disputed or even

excluded due to rapid decoherence in a wet,
warm environment of brain tissue (Seife, 2000;

Tegmark, 2000). Our own experimental results

with fractal and non-fractal model templates have

shown that the persistence of a quantum coherent

state can be prolonged at ambient temperature if

the molecular substrate has fractal geometry

(Bieberich, 2000b). However, a potential signifi-

cance of fractal lattices for the emergence of
consciousness from a molecular quantum compu-

tation is very hypothetical and deserves an analysis

that should be separated from the discussion of

RFNNs.

Molecular operations that engage a neuron or

sub-neuronal structure into a spatio-temporally

extended fractal will most likely not be detectable

by monitoring single neuron activity, unless the
neurons are embedded into a supportive neuronal

network. In future studies, we will investigate the

possibility to simulate or create RFNNs in appro-

priate in vitro model systems, e.g. hybrid elements

between neurons and electronic chips (Fromherz et

al., 1991; Zeck and Fromherz, 2001). These

neurochips are advantageous over classical elec-

trode recordings due to noninvasive stimulation
and monitoring of a neuronal network that has

been naturally grown on a semiconductor surface.

The neurochip setup allows for the correlation of

network architecture with electrical activity, an

analysis that cannot be achieved readily by single

electrode recordings in brain slices. It will also

provide the possibility to manipulate and analyze

single neurons on the molecular level, e.g. by
fluorescence labeling of membrane or cytoskeleton

elements while monitoring or modulating the

neuronal network activity. We expect that this

approach will provide us with experimental evi-

dence for the effects of a fractal network archi-

tecture or fractal, molecular lattice structure on

neuronal network processing.
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