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The Role of GTP-Binding Protein
Activity in Fast Central
Synaptic Transmission

Tomoyuki Takahashi,* Tetsuya Hori, Yoshinao Kajikawa,
Tetsuhiro Tsujimoto

Guanosine 59-triphosphate (GTP)–binding proteins (G proteins) are involved in
exocytosis, endocytosis, and recycling of vesicles in yeast and mammalian
secretory cells. However, little is known about their contribution to fast syn-
aptic transmission. We loaded guanine nucleotide analogs directly into a giant
nerve terminal in rat brainstem slices. Inhibition of G-protein activity had no
effect on basal synaptic transmission, but augmented synaptic depression and
significantly slowed recovery from depression. A nonhydrolyzable GTP analog
blocked recovery of transmission from activity-dependent depression. Neither
effect was accompanied by a change in presynaptic calcium currents. Thus, G
proteins contribute to fast synaptic transmission by refilling synaptic vesicles
depleted after massive exocytosis.

Fast synaptic transmission is mediated by quan-
tal packets of neurotransmitters released from
synaptic vesicles through exocytosis (1). When
the synaptic vesicles in the readily releasable
pool (RRP) are depleted, they are replenished
through vesicle recycling from a reserve pool
(2). In yeast and mammalian secretory cells, a
variety of G proteins are involved in vesicle
endocytosis, trafficking, and exocytosis (3).
However, the functional role of G proteins in
fast synaptic transmission remains unclear.
Synaptic transmission can be blocked by gua-
nine nucleotide analogs (4) or Rab3A-binding
peptides (5) injected into squid giant nerve ter-
minals, suggesting that monomeric G proteins
such as Rab3A may contribute to exocytosis (4,
6). In contrast, exocytosis is inhibited by over-
expression of Rab3A or Rab3 regulator proteins
in secretory and hippocampal cells, suggesting
that this G protein may negatively modulate
exocytosis (7). As a step toward clarifying the
individual roles of G proteins, we studied the
overall contribution of presynaptic G-protein
activity to fast synaptic transmission by infus-
ing guanine nucleotide analogs into the giant

nerve terminal, the calyx of Held, visually iden-
tified in slices of rat brainstem (8). In this
preparation, presynaptic Ca21 currents (IpCa)
and glutamatergic excitatory postsynaptic cur-
rents (EPSCs) can be recorded simultaneous-
ly while drugs of given concentrations are
applied into the nerve terminal through a
whole-cell pipette (9, 10).

In paired pre- and postsynaptic recordings,
EPSCs were evoked stably at 0.1 Hz in a
postsynaptic principal cell in the medial nucleus
of trapezoid body (MNTB) by presynaptic ac-
tion potentials elicited at the calyx of Held
(9–11). Application of guanosine 59-O-(2-
thiodiphosphate) (GDPbS, 3 to 6 mM) into
the calyx through pipette perfusion blocked
G-protein activity, as indicated by a marked
reduction of the baclofen-induced EPSC in-
hibition (12), but had no effect on EPSCs
(Fig. 1A) (mean amplitude 10 min after in-
fusion 5 107 6 9.8% of control, n 5 4).
Thus, presynaptic G-protein activity is not
immediately required for basal synaptic
transmission.

We next examined whether G-protein ac-
tivity is involved in synaptic depression.
EPSCs were evoked by IpCa at 0.1 Hz (9, 11).
After a stable epoch, a train of 30 stimuli at
10 Hz depressed EPSC amplitude to 57 6 7%
(mean 6 SEM, n 5 6), whereas IpCa was not
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reduced (13), indicating that the synaptic de-
pression was caused by a mechanism down-
stream of Ca21 influx (Fig. 1B). Because
postsynaptic AMPA receptors recover from
desensitization within 100 ms (14), the de-
pression must be presynaptically mediated,
most likely by the depletion of synaptic ves-
icles in RRP (15, 16), although reduction of
release probability (17) may be an additional
factor. When GTP (0.5 mM) was replaced by
GDPbS (3 mM) in the presynaptic pipette,
EPSCs were depressed to a greater extent (29 6
7%; n 5 6, P , 0.01) during the 10-Hz train
(Fig. 1, B and C). At lower frequencies (0.2 to
1.0 Hz, 30 stimuli), the effect of GDPbS was
not significant (Fig. 1C).

The recovery time from synaptic depression
was measured from EPSC amplitude at various
time intervals after the 10-Hz train (Fig. 2A).
With GTP (0.5 mM) in the presynaptic pipette,
the time constant of recovery was 3.32 6 0.91 s
(n 5 7), whereas with GDPbS, recovery was
much slower (time constant, 15.7 6 2.6 s; n 5
8, P , 0.001) (Fig. 2B). To exclude the possi-
ble side effect of GDPbS, we omitted GTP
from presynaptic pipettes and washed out en-
dogenous GTP for 20 min after rupture. The
recovery time constant then fell to a value
between those obtained for GTP and GDPbS

(8.44 6 1.2 s; n 5 9, significantly different
from both, P , 0.02) (Fig. 2B). To examine
whether this effect is mediated by GTP sites or
adenosine triphosphate (ATP) sites through
cross talk, we loaded calyces with ATP (10
mM) together with GDPbS (3 mM). The re-
covery time constant was 13.5 6 3.4 s (n 5 3),
which was not significantly different from that
with GDPbS alone (P 5 0.57). Thus, G pro-
teins in the nerve terminals play a role in accel-
erating recovery from synaptic depression.

Both monomeric and heterotrimeric G
proteins are potentially involved in accelerat-
ing recovery from depression. Mechanisms
downstream of heterotrimeric G proteins such
as cyclic nucleotide cascades may also be
involved. When the intracellular cyclic nucle-
otide concentration was raised by bath appli-
cation of forskolin (20 mM) in combination
with isobutylmethylxanthine (200 mM), the
amplitude of EPSCs increased (by 28 6
3.6%, n 5 7). After a 10-Hz train (for 0.3 s),
EPSCs recovered with a mean time constant
of 3.54 6 0.30 s, similar to the control value
(3.95 6 0.30 s, P 5 0.42) [compare with
(15)]. Thus, cyclic nucleotides do not seem to
be involved in recovery after depression.

Next we examined the effect of the nonhy-
drolyzable GTP analog guanosine 59-O-(2-thio-

diphosphate) (GTPgS). When GTPgS (0.2 mM)
was infused into the calyx (Fig. 3A), EPSCs
gradually diminished concomitantly with IpCa

and reached a low, steady level (35 6 5%, n 5
10) within 20 min (Fig. 3A) through activation
of heterotrimeric G proteins (9, 18). A 10-Hz
train administered in the presence of GTPgS
(0.2 mM) depressed EPSCs (Fig. 3B) to 46 6
5%, n 5 9), a value between those obtained for
the control (with GTP) and GDPbS (Fig. 1B).
Although IpCa was unchanged throughout, the
recovery of EPSCs from depression was incom-

Fig. 1. Effects of GDPbS on basal synaptic
transmission and depression. (A) EPSCs were
evoked by presynaptic action potentials elicited
by 1-ms depolarizing current pulse at 0.1 Hz.
GDPbS (6 mM) was infused into the calyx
(arrow). EPSCs and presynaptic action poten-
tials before (1) and after (2) GDPbS application
are shown above the panel. Bath application of
baclofen (10 mM, 40 s) (filled bars) was done 10
min before and 10 min after GDPbS applica-
tion. Sample records were averaged from six
consecutive records in this and in subsequent
figures. (B) EPSCs (lower panel) evoked by IpCa
(upper panel) underwent synaptic depression
during a train of repetitive stimulation (10 Hz,
3s) and recovered after returning to 0.1 Hz.
Synapses with their calyces were loaded either
with GDPbS (3 mM) (F) or GTP (0.5 mM) (E).
Amplitudes of IpCa and EPSCs are normalized to
their mean amplitude at 0.1 Hz before the
10-Hz train. IpCa and EPSCs before (1), during
(2), and after (3) the 10-Hz train are superim-
posed in sample records in the upper panel. (C)
The frequency dependence of the depression
ratio at calyces loaded with GTP (E) or GDPbS
(F). Data points and error bars represent the
mean 6 SEM from five to eight synapses in this
and in subsequent figures. The depression ratio
was estimated from the mean amplitude of the
last five EPSCs during the repetitive stimulation
divided by the mean amplitude of five EPSCs in
the control at 0.1 Hz. At six synapses, the
difference between GTP and GDPbS is signifi-
cant at 10, 5, and 2 Hz (P , 0.02), but insig-
nificant at 1, 0.5, and 0.2 Hz (P . 0.1). The
mean amplitude of EPSCs (2.43 6 0.54 nA, n 5
6) in calyces loaded with GTP is comparable to
that with GDPbS (2.04 6 0.30 nA, n 5 6).

Fig. 2. Effects of guanine nucleotides on the time
course of recovery from synaptic depression. (A)
Experimental protocol and sample recordings of
EPSCs during a 10-Hz train (left, superimposed)
and of EPSCs evoked by test pulses at different
time intervals (DT, right, superimposed) after the
conditioning train. (B) The time course of recov-
ery with GTP (n 5 4 to 6) (E), with GDPbS (n 5
5 to 8) (F), or without guanine nucleotides (n 5
8 to 9, 20 to 40 min after whole-cell recording)
(‚). Single exponential curves were fit by the
least-squares method. The negative values for the
first two points (0 and 0.5 s) with GDPbS may be
due to the recovery from combined synaptic fa-
cilitation masked by depression during high-fre-
quency stimulation. (C) Time course of recovery
from depression in calyces loaded with GTPgS
(0.2 mM, n 5 6 to 8). The recovery time courses
in calyces loaded with GTP or GDPbS are shown
by dashed lines.
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plete in GTPgS (Fig. 3B) (88 6 3%, n 5 6)
(19), indicating that the recovery of EPSCs from
depression was blocked at the step downstream
of Ca21 influx. Despite the incomplete recovery
of EPSCs from depression, the rate of recovery
was similar to that for the control (GTP, P .
0.6), with a mean time constant of 3.82 6 0.93 s
(n 5 7) (Fig. 2C). Thus, GTPgS can replace
GTP with respect to the rate but not with respect
to the magnitude of recovery.

Tetanic stimulation (100 Hz for 10 s) causes
a marked depression of EPSCs accompanied by
inactivation of IpCa, which is followed by a
gradual recovery owing largely to the recovery
of IpCa from inactivation (20). In GTPgS,
EPSCs no longer recovered from posttetanic
depression, whereas IpCa recovered from inac-
tivation with a normal time course (n 5 6) (Fig.
4A). EPSCs recovered normally in GDPbS (3
mM) or GTP (0.5 mM) (Fig. 4B). This block of
recovery by GTPgS was not associated with a

change in quantal size, because the mean am-
plitude of miniature EPSCs (mEPSCs) was the
same after tetanic stimulation (107 6 8.2%,
n 5 6) (Fig. 4C). Thus, GTP hydrolysis is
essential for EPSCs to recover from synaptic
depression (21).

Our results indicate that G-protein activity is
essential for recovery from synaptic depression.
The rate of recovery from depression mainly
reflects the rate of RRP replenishment (15, 16),
which is accelerated by intracellular Ca21 (22).
In many cell systems, intracellular Ca21 con-
centration is affected by inositol phosphates and
their receptors, both of which can be up-regu-
lated by heterotrimeric G proteins (23). How-
ever, at the calyx of Held, loading of inositol
1,4,5-trisphosphate (30 mM) into the nerve ter-
minal had no effect on the EPSC amplitude or

the frequency of mEPSCs (24). The most plau-
sible candidates for accelerating vesicle replen-
ishment are monomeric G proteins such as Rab
or ARF (3, 25), although tyrosine kinase acti-
vation by heterotrimeric G proteins (26) re-
mains a possibility.

G-protein turnover through GTP hydroly-
sis is essential for vesicular trafficking in
secretory cells (3). In isolated nerve-terminal
preparations, GTPgS blocks the dynamin-de-
pendent fission process of budded coated ves-
icles in endocytosis (27). In the present
study, GTPgS irreversibly diminished EPSCs
in an activity-dependent manner without af-
fecting IpCa, recovery rate from depression,
or quantal size. GTPgS may block the turn-
over of dynamin or other G proteins involved
in trafficking, thereby possibly immobilizing
vesicle recycling. It may then reduce the
number of synaptic vesicles at the release site
or the available number of release sites.

At the calyx-MNTB synapse, GDPbS had
no effect on basal synaptic transmission, and
GTPgS attenuated EPSCs only through IpCa

suppression. These results cannot be recon-
ciled with the hypotheses that presynaptic G
proteins directly modulate the exocytotic pro-
cess, either positively or negatively (4, 6, 7),
although a possible cancellation of opposite
effects in blocking overall G-protein activity
cannot be excluded from our present study. It
is also possible that the role of G proteins
differs among cell types and species.
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Abolition and Reversal of Strain
Differences in Behavioral

Responses to Drugs of Abuse
After a Brief Experience

Simona Cabib,1 Cristina Orsini,1 Michel Le Moal,2

Pier Vincenzo Piazza2*

Inbred strains of mice are largely used to identify the genetic basis of normal
and pathological behaviors. This report demonstrates that a moderate period
of food shortage, an ecologically common experience, can reverse or abolish
strain differences in behavioral responses to the abused psychostimulant am-
phetamine. The period of food shortage occurred when the animals were
mature and was terminated before the administration of amphetamine. Strain
differences in behavior appear highly dependent on environmental experiences.
Consequently, to identify biological determinants of behavior, an integrated
approach considering the interaction between environmental and genetic fac-
tors needs to be used.

Genetic analyses using inbred strains of mice
are increasingly utilized to identify biological
determinants of normal and pathological behav-
iors (1–3). A basic prerequisite of these inves-
tigations is the existence of consistent and reli-
able behavioral differences between inbred
strains, which are then used to identify the
genetic determinant of behavioral phenotypes
(1, 2, 4). A recent report described variation in
the behavior of inbred strains that can occur
across laboratories (4). These results are partic-
ularly troubling because they are observed de-
spite the explicit effort to maintain identical
experimental settings and environmental condi-
tions. Although the authors restrict the effects
of environmental variables to phenotypes with
a small genetic influence, doubt remains as to
whether major gene-environment interactions
might be currently overlooked.

We studied the effects of food shortage on
strain differences in behavioral phenotypes re-
lated to drug abuse, a behavioral pathology

considered to have strong genetic influences
(5). Food shortage was chosen for three rea-
sons. First, it is a common and ecologically
relevant environmental experience very likely
to occur during the life-span of animals living
in the wild. Second, it is often used in labora-
tory settings because it accompanies learning
tests based on positive reinforcers including
drugs of abuse (6). Third, food shortage in-
creases the activity of biological systems medi-
ating behavioral responses to drugs of abuse,
such as the mesencephalic dopaminergic trans-
mission and glucocorticoid secretion (7). Mice
from the C57BL/6JIco and DBA/2JIco inbred
strains were studied (8). C57BL/6J and DBA/2J
are among the oldest and most studied inbred
strains (3), and the recombinant inbred strains
derived from them are largely used for quan-
titative trait loci (QTL) analysis (1). Two
behaviors induced by the abused psycho-
stimulant amphetamine were studied: loco-
motion and place conditioning. Drug-induced
locomotion is the test most often used for
evaluating the motor-stimulating effect of
psychostimulant drugs (9). It represents a
simple unconditioned response where genetic
influences have been well characterized (4,
10). In place conditioning, aversive or re-
warding effects of drugs are inferred from
measuring, in a drug-free state, preference
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