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Abstract

The goal of this study was to compare how multivariate statistical methods for dimension reduction account for correlations
between simultaneously recorded neurons. Here, we describe applications of principal component analysis (PCA) and independent
component analysis (ICA) (Cardoso J-F, Souloumiac A. IEE-Proc F 1993;140:362–70; Hyvarinen A, Oja E. Neural Comput
1997;9:1483–92; Lee TW, Girolami M, Sejnowski TJ. Neural Comp 1999;11:417–41) to neuronal ensemble data. Simulated
ensembles of neurons were used to compare how well the methods above could account for correlated neuronal firing. The
simulations showed that ‘population vectors’ defined by PCA were broadly distributed over the neuronal ensembles; thus, PCA
was unable to identify independent groupings of neurons that shared common sources of input. By contrast, the ICA methods
were all able to identify groupings of neurons that emerged due to correlated firing. This result suggests that correlated neuronal
firing is reflected in higher-order correlations between neurons and not simply in the neurons’ covariance. To assess the
significance of these methods for real neuronal ensembles, we analyzed data from populations of neurons recorded in the motor
cortex of rats trained to perform a reaction-time task. Scores for PCA and ICA were reconstructed on a bin-by-bin basis for single
trials. These data were then used to train an artificial neural network to discriminate between single trials with either short or long
reaction-times. Classifications based on scores from the ICA-based methods were significantly better than those based on PCA.
For example, scores for components defined with an ICA-based method, extended ICA (Lee et al., 1999), classified more trials
correctly (80.5891.25%) than PCA (73.1490.84%) for an ensemble of 26 neurons recorded in the motor cortex (ANOVA:
PB0.005). This result suggests that behaviorally relevant information is represented in correlated neuronal firing and can be best
detected when higher-order correlations between neurons are taken into account. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

An emerging view in systems neuroscience is that
behaviorally relevant information is represented by the
concurrent activation of populations of neurons that
form cell assemblies distributed across multiple levels of
the nervous system (see Nicolelis et al., 1997b for
review). The introduction of recording methods for the
acquisition of spike trains from large populations of
neurons (e.g. Kruger and Bach, 1981; McNaughton et
al., 1983; Reitboeck, 1983; Nicolelis et al., 1997a; see

Nicolelis, 1999 for review) has intensified interest in the
investigation of how distributed cell assemblies process
behaviorally relevant information. A critical step for
achieving this goal is the introduction of methods for
data analysis that could identify functional neuronal
interactions within the high dimensional data sets col-
lected with these new recording methods.

The initial basis of this study was the realization that
multivariate statistical methods for dimension reduction
might be able to reconstruct functional interactions
between multiple neurons by providing a bin-by-bin
estimate of correlated neuronal firing. Classically, di-
mension reduction techniques have been used to trans-
form a large set of observed variables into a smaller set
of arbitrary variables, or factors, that are derived from
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some property of the original data set. In the case of
principal component analysis (PCA), the goal is to find
a small set of linear functions that account for the
covariance structure of the original high dimensional
data set (see Chapin, 1999 for review). By contrast,
recently developed methods for independent component
analysis (ICA) attempt to isolate factors that are derived
from higher-order correlations within the dataset, i.e. the
higher moments describing the distribution of the vari-
ables, such as kurtosis (see Comon, 1994 for review).

Here, we report an application of ICA that allows for
the visualization and quantification of behaviorally rele-
vant information represented through correlated neu-
ronal firing. To further validate this new approach, ICA
was compared with a classical multivariate statistical
method, principal component analysis, using data from
(1) simulated ensembles of Poisson spike trains and (2)
simultaneously recorded spike trains (n=14–32)
recorded in the rat motor cortex during the performance
of a reaction-time task (Laubach et al., 1998). The main
goal of this study was to investigate how PCA and ICA
detect patterns of correlations across large ensembles of
neurons. In addition, we show that these methods
provide a quantitative representation of correlated neu-
ronal firing that can be further analyzed with other
methods, including techniques for statistical pattern
recognition.

2. Multivariate statistical methods

2.1. Principal component analysis

PCA is a classical method for multivariate data anal-
ysis that describes interactions within a given data set
that are derived from the matrix of correlations between
all pairs of variables. PCA has been used for many years
as a standard method for preprocessing multivariate data
sets to reduce their dimensionality. The goal of PCA is
to find a reduced set of new variables that, in a decreasing
order, account for the largest portions of covariance
across the dataset. Further details about PCA can be
found in textbooks on multivariate analysis (e.g. John-
son and Wichern, 1992; Reyment and Jöreskog, 1993).

Neurophysiological applications are described in
Nicolelis and Chapin (1994) and Chapin and Nicolelis
(1999).

By design, individual principal components are unable
to detect epochs of correlated neuronal firing between
subsets of a neuronal ensemble. This is because the
principal components are derived from the (second-or-
der) correlation matrix for the neuronal ensemble. Thus,
the first principal component is chosen so as to maximize
the correlations between all neurons. Typically, this
population vector is broadly mapped over the collection
of neurons and is highly related to the average response
of the neuronal ensemble (Nicolelis et al., 1998). Subse-
quent population vectors are derived to account for
maximal, orthogonal (co-)variance. However, the higher
principal components (PC2 and higher), which often
tend to account for the activity of subsets of neurons, are
always dependent on the choice of the first component.
Because the first component reflects the overall activity
level of the neurons, the higher principal components are
never able to clearly resolve independent sources of
excitation from the overall activity of the ensemble. We
illustrate this point below using data from simulated
neuronal ensembles and from neurons recorded in the
motor cortex of behaving rats.

Varimax rotation (VMAX) is a modification of basic
PCA that attempts to simplify the weight structure
derived from PCA so that each component has a few
variables with large coefficients and many with near-zero
coefficients (Kaiser, 1958). The goal of VMAX is to
adjust the coefficients for each principal component such
that they are all near zero or near one. The results of this
rotation is that the variance accounted for by each
component is near maximal. A good account of the
algorithm for VMAX is given in Reyment and Jöreskog
(1993).

In this paper, PCA was carried out using Matlab (The
Mathworks, Natick, MA) and the Matlab statistics tool
box. VMAX was done using code for Matlab as de-
scribed in Reyment and Jöreskog (1993).

2.2. Independent component analysis

Several methods have been developed recently for
ICA. These methods have been used mostly for the ‘blind
source separation’ (BSS) problem (Fig. 1), where signals
from a number of sources are mixed together in some
visual or auditory dataset and the goal is to ‘un-mixed’
and recover the sources. The BSS problem is typically
represented as:

x(t)=As(t), (1)

where x(t) represents the n observed signals (i.e. ne-
urons) over t time-points (i.e. bins), s(t) represents the
n source signals, and A is the ‘mixing matrix’, that must

Fig. 1. In the blind source separation problem, one assumes that a set
of measured signals, x, reflects the linear sum of some set of sources,
s. The problem would be solved in theory if one could determine a set
of weights, A, that are responsible for mixing the sources over the
signals, i.e. the ‘mixing’ matrix. In practice, this is done by finding a
different set of weights, B, that attempt to produce a new set of
signals, y, that are as independent statistically as possible.
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be resolved for source separation (see Comon, 1994 and
Cardoso, 1998 for review). The main assumptions of
the BSS problem is that the sources are independent
and that they can be deduced using only the observed
signals. This problem is reformulated to the following:

y(t)=Bx(t), (2)

where y(t) represents the statistical estimates of the
sources that are derived from analyses such as ICA and
B is the ‘unmixing matrix’ that is provided by a given
algorithm for ICA. In general, ICA has been used
under the assumption that the number of sources are
equal to the number of signals. In dimension reduction
applications, this assumption is no longer made. In-
stead, one assumes the number of sources is less than
the number of signals.

Applications of ICA to the BSS problem work be-
cause ICA resolves commonalties in the phase of the
observed signals (Bell and Sejnowski, 1997), which are
presumably due to the signals being influenced by com-
mon sources. Phase relations between the observed
signals are usually achieved by quantifying the kurtosis
of the signals and finding factors that account for
aspects of the signals that are ‘commonly peaked’, i.e.
synchronous signals across multiple channels. In our
application of ICA, PCA is used first for dimension
reduction. Then, ICA is used to rotate the weights from
PCA to make each component as independent as possi-
ble. This is done by remapping the weights from PCA
to maximize the kurtosis of each component. These
signals invariably exhibit supra-Gaussian kurtosis,
which implies that the signals are clustered around a
range of values that is smaller than expected from a
similar data set (i.e. with the same mean and standard
deviation) generated from the Gaussian distribution.
Theoretically, a remapping of PC weights that takes
epochs of synchronous firing into account, should ‘un-
mix’ independent signals that are represented by multi-
ple PCs and produce a set of independent components.

In the context of neuronal ensemble data, we inter-
pret supra-Gaussian kurtosis in scores for the principal
components as evidence for an independent brain sig-
nal, such as a ‘common input’ in the sense of cross-cor-
relation analysis. For example, if there are epochs of
correlated firing that occur for a subset of the neuronal
ensemble, these epochs will generate large scores in any
principal component that maps onto the correlated
neurons. When the PC weights are remapped to ac-
count for the kurtosis of the PC scores, they will be
adjusted such that a new set of weights is found that
indicates which neurons tend to fire together.

Two types of algorithms have been used to solve the
ICA problem. Algebraic methods, such as the joint
approximate diagonalization of eigenmatrices method,
or JADE (Cardoso and Souloumiac, 1993), utilize ma-
trix transformations to find a mapping over the vari-

ables that maximize for their kurtosis. By contrast,
neural network methods for ICA, such as those used in
this paper (Hyvarinen and Oja, 1997; Lee et al., 1999),
solve this problem by finding a set of weights that
maximize the entropies of each independent component
and minimize the mutual information between indepen-
dent components, an idea that was proposed originally
by Bell and Sejnowski (1995).

The success of ICA for finding commonalities
amongst multiple, simultaneously recorded neuronal
spike trains, such as correlated firing, is directly related
to ICA being based on analyses of higher-order correla-
tions. For our application of ICA, we assume that the
sources are brain-derived signals that alter the excitabil-
ity of multiple neurons in our simultaneously recorded
neuronal ensembles. In the simulations used in this
paper, this relation was studied explicitly by adding
spikes from the sources to the simulated spike trains. In
data collected from the motor cortex, it is assumed that
commonalties in the neurons’ response properties arise
from common sources of inputs either from the cortex
or subcortical areas (e.g. thalamus) that project to the
motor cortex. Such sources of common input could
produce nearly simultaneous increases in the firing
probabilities of the neurons that receive their projec-
tions. Thus, neurons that receive common inputs will
have correlated responses, both around the time of the
event that drives the source neurons and on a trial-by-
trial basis. This point is illustrated below using simu-
lated neuronal ensembles and neuronal ensembles
recorded in the motor cortex of rats that performed a
reaction-time task.

3. Methods

3.1. Simulated spike trains

Simulated spike trains were created as follows: Back-
ground discharge was created for 64 channels of data
over 1000 ‘trials’. For each time-point in the spike train
(an array with 1 ms bins for each time-point), a Poisson
process was simulated with a rate of 1 Hz. If the
generator produced a count, a spike was added to the
bin. A minimum refractory period of 2 ms was used
such that if a spike was placed in a given bin, then the
Poisson generator skipped over the next two bins in the
spike train.

Four sources of excitation were generated as above
except that the rate of the Poisson generator was set to
between 50 and 200 Hz (with a single rate used for a
given simulation). In addition, spikes were only gener-
ated for a window of time, the ‘response window’, after
the occurrence of a periodic ‘stimulus’ that occurred at
100 ms intervals. The timing of the simulated neuronal
responses was based on the response properties of real
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Fig. 2. An example of the simulated neuronal ensembles. (a) The distribution of four sources over an ensemble of 64 neurons over 1000 trials.
(b) Response properties of source 1 and four neurons. (c) Cross-correlational analysis for these neurons.

cortical neurons studied in receptive field mapping ex-
periments (A.A. Ghazanfar, personal communication).
The response window began 8 ms after the stimulus and
ended 15 ms later. The maximum probability of spiking
within the window occurred at a latency of 12 ms.

Spikes were added from the sources to nine neurons
in the simulations of 64 neurons. For a given simula-
tion, the correlation between the sources and the neu-
rons was set to 0.2–0.8 (with a single correlation used
for a given simulation). Source spikes were added for
each neuron independently using a pseudo-random
number generator based on the uniform distribution.
Spike times from the sources were randomly jittered in
some simulations by adding 0, 1, or 2 ms to the times
of the sources spikes. If the neuron’s spike train con-
tained a (background) spike at the time of the source
spike, then the source spike was not added to the
neuron’s spike train. Cross-correlation analysis was
then used to show that neurons that shared a common
source had peaks in their cross-correlation histograms
that were more than was expected from the shift predic-
tor (Perkel et al., 1967), which was determined using
Stranger (Biographics, Winston-Salem, NC). By con-
trast, neurons that received spikes from different
sources had central peaks in their cross-correlation
histograms, but these were not larger than expected
from the shift-predictor test.

These points are illustrated in Fig. 2, which shows
data from one of the simulated neuronal ensembles. In
panel (a), the distribution of the four sources’ influence
over the ensemble of 64 neuron-like elements, which

were arranged in a 8×8 matrix, is shown. In addition,
the relation of four of the neurons to each source is
depicted in the right part of panel (a). Raster plots and
peri-event histograms for source 1 and four neurons
from a typical simulation are shown in panel (b). The
‘trigger event’ (time=0) produced increased activity in
source 1, which resulted in increased activity in neurons
10 and 11. Neuron 55 had a similar response pattern
but was driven by a different source (c4). Neuron 56
was not driven by any of the four sources and so only
contained random, background activity. Cross-correla-
tion histograms for the neurons are shown in panel (c).
The black lines represent the raw correlation between
neuron 10 and itself (autocorrelation) and the other
three neurons. The red lines represent the shift predic-
tor, which accounts for correlations between neurons
with similar response properties that are due to differ-
ent sources of excitation. Note that the raw correlo-
gram for the simulated neurons that were excited by a
common source (c10 and c11) has a peak around
zero lag that is larger than the peak in shift predictor.
By contrast, the correlogram for neurons 10 and 55,
which did not receive common inputs, is not larger than
that of the shift predictor.

3.2. Neurophysiological data

Adult male rats were trained to perform a simple
reaction-time task. In the task, the animals were re-
quired to maintain a lever press over a variable interval
(400–800 ms) and to release the lever within 1 s of the
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onset of either a tone, vibration of the lever, or the
combination of these stimuli. Correct performance of
the task was rewarded by providing the rats with a
drop of water 100 ms after each correct response.
Incorrect responses occurred when the rats released the
lever before the stimuli or had reaction-times longer
than 1 s. These inappropriate behaviors were signaled
by turning off the houselights for 2 s (i.e. time-out).
After the animals demonstrated asymptotic perfor-
mance in the task, arrays of microwire electrodes were
implanted in the motor and premotor cortices using
standard stereotaxic and aseptic procedures (Nicolelis
et al., 1997a).

The behavioral data were analyzed as follows: Reac-
tion-times (RTs) were computed as the time from the
onset of the trigger stimuli to the initial movement of
the response lever, which was detected by a mi-
croswitch. The upper and lower quartiles for the distri-
butions of RTs were determined and used to partition
the trials into those with short RTs (i.e. lower quartile),
long RTs (i.e. upper quartile), and intermediate RTs
(i.e. middle 50% of data). Quantitative analyses of the
relationship between neuronal responses and RT be-
havior were made by comparing trials with short and
long RTs using the methods for PCA and ICA de-
scribed in this paper and artificial neural networks that

were trained to discriminate between trials with RTs in
the lower and upper quartiles.

3.3. PCA and ICA

The steps in our data analysis procedure are depicted
in Fig. 3. The organization of the data was as follows:
First, a matrix was constructed from the spike trains of
the neurons (Fig. 3a). Each row in the matrix repre-
sented neural activity from a single behavioral trial.
Each column represented a time point (i.e. a bin of 1
ms) in a spike train of one of the neurons. Sets of
columns containing spikes for the individual neurons
were appended together, to create the raw data matrix.
This matrix had as many columns as the product of the
number of neurons and the number of bins. The spike
trains were smoothed and decimated five times, using
low-pass filtering with a 3-tap Hamming window and
decimating the spike trains with a 32-point Kaiser
window. This procedure gave rise to an effective bin
size of 5 ms. Filtering and decimation was done using
routines in the Signal Processing toolbox for Matlab.

The matrix of smoothed spike counts described
above was then rearranged such that each neuron was
represented as a column and each bin was represented
as a row. Spike trains from individual trials were thus

Fig. 3. The data structures and analysis procedures used in this study. (a) Data structures for applying independent component analysis to
neuronal ensemble data. (b) The series of steps in data analysis used in this study.
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Fig. 4. Spike shifting was used to compare how well PCA and
different methods for ICA accounted for correlated neuronal firing.
Here, spike trains from a group of seven neurons are shown for the
original condition (left) and after shifting (right). Each row in the
plots represents spikes from a different neuron. Spike trains from
each neuron and each trial were shifted by a random amount of time
and the amount each neuron was shifted was chosen independently.
The amount and direction of time shift for each neuron is indicated
by the size of the arrow head to the left of the raster plots.

Local features from the average peri-event his-
tograms for the single neurons, the ensemble average,
and the principal and independent components were
identified using the wavelet-based method, discriminant
pursuit (Buckheit and Donoho, 1995). These features
were then further analyzed with an artificial neural
network for statistical pattern recognition. The wavelet
analysis was done as follows: The average response for
trials with long reaction-times was subtracted from the
average for trials with short reaction-times, to give a set
of ‘difference vectors’ for each representation of the
neuronal population. The difference vectors were then
decomposed into a wavelet packet table using the
Daubechies 4-point wavelet. Entries in the wavelet
packet table that accounted for the largest amplitudes
in the difference vectors were selected as local features.
Scores for these features were extracted on a trial-by-
trial basis and used as input to competitive neural
networks, trained with a learning vector quantization
algorithm (Kohonen, 1997; see Nicolelis et al., 1999 for
further details on this method), that classified single
trials as having either short or long reaction-times.
Leave-one-out, or N-fold, cross-validation (Mosteller
and Tukey, 1977) was used to assess error rates from
this classification procedure.

To test if precise timings between spikes across the
group of neurons was an essential feature for PCA and
ICA, a spike shifting procedure was used (Nicolelis et
al., 1999). Spike shifting (see Fig. 4) was performed as
follows: Spikes from each neuron were pseudo-ran-
domly shifted in time between 1 and 7 bins, which gave
perturbations in spike timing of between 10 and 70 ms.
This was done to reduce the zero-lag coherence between
neuronal spike trains on a trial-by-trial basis. These
data were used as testing data for the artificial neural
network that was trained with scores for the indepen-
dent components obtained from the original, unshifted
spike trains. The effect of the shift test was to perturb
both the temporal precision of the neuronal firing pat-
terns and the zero-lag coherence of the patterns.

4. Results

4.1. Simulated spike trains

Analyses of the simulated neuronal ensembles
showed that the ICA-based methods and varimax rota-
tion of the principal components were able to segregate
the sources to the appropriate neurons (Fig. 5). By
contrast, standard PCA was unable to resolve the influ-
ence of the individual sources on the ensembles. That is,
VMAX and all methods for ICA weighted highly on a
few neurons that were driven by a common source. By
contrast, weights for PCA were broadly distributed
over many neurons, with PC1 having weights for neu-

appended together sequentially. The mean value for
each column (i.e. for each neuron) in this matrix was
subtracted and each column was then normalized to
have unit variance. Ensemble averages were computed
as the average response over the collection of rows
representing each column (i.e. time-point or bin). Prin-
cipal components for the zero-mean, unit variance ma-
trix of smoothed spike counts were extracted using the
singular value decomposition algorithm. The number of
major components, that indicated the number of inter-
acting groups in the ensembles, was identified by find-
ing the number of eigenvalues that were larger than 1
(for data with variance of 1). This value was also used
to limit the number of independent components ex-
tracted from the matrix of spike counts and to deter-
mine the number of principal components that were
rotated using VMAX.

Logistic (lICA) and extended (xICA) ICA were run
with principal component dimension reduction and
data whitening (Lee et al., 1999). Fast ICA (Hyvarinen
and Oja, 1997) was done with principal component
dimension reduction and with sequential and simulta-
neous extraction of the independent components using
the following contrast functions: kurtosis (fICAk), tan-
sig (fICAt), and the Gaussian non-linear function
(fICAg). Scores for the principal and independent com-
ponents were reconstructed on a bin-by-bin basis and
the resulting matrices representing the components were
re-arranged into a peri-event form (i.e. each row is a
trial, and each column is a bin, with a block of x bins
representing a component’s score with x bins per trial).
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rons that were not even driven by the sources. This
result indicates that the ICA methods and VMAX are
better suited for detecting sparsely distributed func-
tional relations within a neuronal ensemble. In other
words, if information from one cortical area was con-
veyed to a restricted portion of some neuronal ensem-
ble, then the ICA-based methods would be able to
detect the input and assign it to the appropriate neu-
rons. This same input would be represented broadly by
multiple PCs, thereby masking the interactions between
neurons that were driven by the input of interest.

The signals described from these weights are shown
for some of the representations and are compared with
the actual source signals in Fig. 6. Whereas scores for
the PCs were effected by spikes in any of the four
sources, scores for both JADE and xICA were more
exclusively driven by the activity of a single source.
This result was quantified by finding the Pearson corre-
lation coefficients between the sources and the scores
for functions derived with all methods. The maximum
correlations between a single source and the compo-
nents are shown on average in Fig. 7(a). Note that all
methods except PCA were able to resolve at least one
source (i.e. correlation coefficient large than 0.8). In
addition, the ratios of the correlation between the com-
ponents for each method and its two best sources are
shown in Fig. 7(b). These values revealed that the
ICA-based methods were more selective than either
PCA or VMAX and that lICA was somewhat worse

than the other methods for ICA. These results imply
that ICA-based methods identified the individual
sources that drove the activity of subsets of the neu-
ronal ensembles. By contrast, PCA represented correla-
tions between neurons in a very different manner,
which was too broad and did not reflect the nature of
the underlying neuronal interaction.

The shift test showed that the temporal precision of
the correlated neuronal firing was no more than 20 ms
(Fig. 8). That is, the ICA-based methods were selective
to a given source only when the spike trains were
shifted by less than 20 ms and these relationships were
lost with further destruction of the temporal precision
of the correlated neuronal firing. By contrast, PCA was
not able to account for the source very well on any time
scale and actually showed spuriously high selectivity for
the source 1 when the spike trains were shifted more
than 30 ms (see Fig. 8(c)). Thus, it appears that rela-
tions between sources of excitation and neuronal re-
sponses may only be valid on fairly precise time-scales,
on the order of 30 ms or less.

4.2. Neurophysiological data

Ensembles of 14–32 neurons that were recorded dur-
ing behavioral experiments in which rats performed a
reaction-time task were used to extend the results above
to actual neuronal ensemble data (Laubach et al.,
1998). The analyses were based on partitioning the

Fig. 5. Subsets of nine neurons in the simulated ensembles of 64 neurons received inputs from one of four sources (upper left plot). These
distributions of source inputs were differentially identified and segregated by the PCA and ICA based methods. Note that the first principal
component (PC) was broadly mapped over the entire neuronal ensemble, even on neurons that had only spontaneous background activity. The
higher PCs appeared to segregate the different sources by contrasting the activity of different pairs of neuronal subsets. By contrast, the ICA-based
methods, and also varimax rotation of the PCs, identified functional interrelations between the neurons and separated different sources to
individual components. The plots in this figure are Hinton diagrams that depict the sign and magnitude of the coefficients using boxes of different
sizes (i.e. magnitude) and color (i.e. sign). Black boxes represent positive coefficients and white boxes represents negative coefficients.
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Fig. 6. ICA-based methods were better able to segregate the individual sources to individual components. The sources (upper left) and scores for
three of the methods evaluated in the paper are shown over a segment of 500 ms. Note that scores for JADE (lower left) and xICA (lower right)
were much more related to the single sources than were the scores for any of functions defined by PCA (upper right).

collection of reaction-times for all trials into quartiles
and comparing trials in the lower quartile with trials in
the upper quartile. The goal of the study was to investi-
gate if the rats’ reaction-times on single trials could be
predicted by the firing of neurons in the caudal and
rostral forelimb areas of the motor cortex. Neuronal
activity over the 250 ms before and 100 ms after the rat
released a response lever (a behavior that defined the
operant response in the task) was analyzed with the
various methods for PCA and ICA described above.

The different methods produced very different ac-
counts of neuronal interactions across simultaneously
recorded neuronal ensembles from the rat motor cortex.
The data set shown in Fig. 9 contained 26 neurons,
with 18 neurons in the caudal forelimb area and six
neurons in the rostral forelimb area. There were seven
eigenvalues larger than 1 for this ensemble of neurons.
In Fig. 9, coefficients are shown for PCA, varimax
rotation of the coefficients from PCA (VMAX), and for
two ICA-based methods, JADE and xICA. Whereas
the coefficients defined through PCA and VMAX were
broadly mapped over the neuronal ensemble, coeffi-
cients from JADE and xICA were much more sparsely
distributed over the neuronal ensembles. The popula-
tion vectors defined by these different methods were
based on different levels of correlated neuronal firing.
PCA-based methods accounted for broadly distributed
neuronal correlations and ICA-based methods ac-
counted for more restricted interactions between the
neurons.

The ICA-based methods were able to more clearly
segregate the response properties of the neurons during

the time around the lever release for trials with short
reaction-times (solid, dark lines) and those for trials
with long reaction-times (dashed, light lines). As is
shown in Fig. 10, scores for PCA and VMAX were
highly similar despite the differences in the coefficients
defined by these two methods (Fig. 9). By contrast, the
average scores for population vectors identified with the
ICA-based methods were somewhat different. For ex-
ample, while the second component from xICA was
highly similar to the third principal component, only
the ICA-based method shows a peak on trials with
short reaction-times while PCA shows peaks for both
types of trials. When scores for population vectors
defined with PCA, VMAX, and the ICA methods were
used to train ANNs to predict the animals’ reaction-
times on single trials, the methods gave differential
predictions of trial outcomes. The best results were
achieved using scores for independent components
identified with xICA (80.5891.25%), which classified
more trials correctly than scores for PCA (73.149
0.84%) (Fig. 11; ANOVA: PB0.005). This result sug-
gests that the higher-order correlations between these
neurons, which were best resolved by xICA, conveyed
behaviorally relevant information.

Finally, when the shift test was used for these data,
we observed that the variances of the scores for the
population vectors were reduced (Fig. 12(a)). More-
over, the degree to which mean signals for trials with
short and long reaction-times differed was reduced and
certain aspects of the response properties were lost
altogether (Fig. 12(b)). The time-scale of this neuronal
shift was over 93 bins, or 30 ms. Therefore, these data
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show that behaviorally relevant information could be
represented in correlated neuronal firing in the rat
motor cortex and that this information is based on a
synchronization of the spike trains on a relatively short
time-scale and not on the overall excitability of the
neurons. These findings indicate that theoretical models
of reaction-time performance should consider correla-
tions between subsets of the neuronal populations in
motor cortex, in addition to traditional firing rate cod-
ing, as a means of representing motor performance. In
this context, our data support with recent studies that
have implicated correlated neuronal activity in the sen-
sorimotor cortex of behaving mammals in representing
behaviorally relevant information (Murthy and Fetz,
1992; Nicolelis et al., 1995; Seidemann et al., 1996;
Riehle et al., 1997; Donoghue et al., 1998; Hatsopoulos
et al., 1998).

Fig. 8. The shift test produced degradations in the correlations
between sources, neurons, and population vectors that were depen-
dent on the range of time over which spikes were shifted. (a)
Correlations between one of the simulated neurons, c10, from one
simulated data set and source 1 are shown for spike shifting over 10,
30, 50, and 70 ms. The correlation between the neuron and the source
rapidly degraded as the time-scale of shifting was increased. (b,c) The
average maximum correlation between population vectors and source
1 and for the ratio of the maximum correlation to the median
correlation are shown for these same time-scales of shifting and for
PCA and three ICA-based methods (JADE, xICA, and fICAg). The
inset panel in (c) shows the ratio data on an expanded scale to better
illustrate the differences between the three ICA-based methods.

Fig. 7. The ability of the different PCA- and ICA-based methods to
account selectively for a single source of common input are shown.
(a) The average maximum correlations between each source and each
component are shown for eight methods. All of the ICA-based
methods and varimax rotation of the principal components were
related to single sources with correlation coefficients around 0.8. By
contrast, the maximum correlations for the principal components
were much lower. (b) The ratio between the maximum correlation
between each source and each component and the next largest
correlation are shown. This is a measure of the selectivity of the
method to resolving a single source of common input. All ICA-based
methods were more selective than both PCA and varimax rotation of
PCA.

5. Summary and discussion

Neural assemblies are thought to arise when neurons
are dynamically arrayed into groups to convey and
process information in a cooperative manner. This form
of neuronal processing is based on the correlated time
structure of individual spike trains. Though the time
scale in which neurons can form assemblies is still a
matter of debate (Abeles, 1991; Shadlen and Newsome,
1994; Softky, 1995; Konig and Engel, 1996; Shadlen
and Newsome, 1998; Nicolelis et al., 1999), analyses of
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Fig. 9. Different methods for multivariate dimension reduction produced very different spatial distributions of neuronal interactions across
simultaneously recorded neuronal ensembles from the rat motor cortex. This data set contained 26 neurons, with 18 neurons in the caudal forelimb
area and six neurons in the rostral forelimb area. There were seven eigenvalues larger than 1 for this ensemble of neurons. Coefficients for these
seven functions are shown for PCA, varimax rotation of the coefficients from PCA (VMAX), and for two ICA-based methods, JADE and xICA.

Fig. 10. These plots are scores for population vectors defined with PCA, varimax rotation of the coefficients from PCA (VMAX), and two
ICA-based methods, JADE and xICA. The average scores for trials with short reaction-times are shown as solid, dark lines and those for trials
with long reaction-times are shown as dashed, light lines. The reference event (time=0) is the moment when the rats released the response lever
within 500 ms of the onset of the trigger stimuli.
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Fig. 11. More information about reaction-time performance was
available from population vectors defined by the ICA-based methods
than was by PCA or varimax rotations of the principal components.
This figure shows the results of using scores for several of the
dimension reduction methods to train artificial neural networks to
discriminate between trials with short and long reaction-times based
on the activity of 26 neurons in the rat motor cortex. Scores derived
with xICA discriminated significantly more trials correctly than did
scores derived with any other method (ANOVA: PB0.01).

firing between two neurons with respect to an external
event. More recently, unitary event analysis has been
proposed to detect correlations between pairs of neu-
rons that need not be time locked to the occurrence of
an external event (Riehle et al., 1997 and also in this
issue).

While pair-wise analyses are sensitive to determining
the functional relationship between two neurons and
some event, the major limitation to such analyses arises
from the combinatorial explosion of paired-combina-
tions needed to understand the inter-relationships
between even a small ensemble of simultaneously

Fig. 12. Spike shifting reduced the variance of the scores for the
population vectors and eliminated important aspects of the responses
of the population vectors that discriminate between trials with differ-
ent reaction-times. (a) The variance of the scores for the population
vectors defined by ICA-based methods was reduced more than that of
population vectors defined by PCA. This was due to the loss of
correlated neuronal firing after shifting the spike trains. The data
shown in the figure are from spike shifting over 10 ms epochs. (b)
Averaged responses for population vectors defined by ICA-based
algorithms discriminated between trials with different reaction-times.
This discriminative information was lost after spike shifting, which
produced decreases in the degree to which the average signals for
trials with short and long reaction-times differed. For example, the
second xICA shown in this figure exhibited an epoch of correlated
firing approximately 50 ms prior to lever release on trials with short
reaction-times and not on trials with long reaction-times. This peak
was not apparent in the averaged histograms after spike shifting.

simultaneously recorded neurons all center on defining
the correlational structure between spike trains under
the null hypothesis that N neurons fire independently.
After correcting for changes in individual spike rate
modulations, pair-wise and population analyses seek to
quantify any residual correlations that may indicate the
presence of cell assemblies. A general limitation to such
correlational analyses is that, while some sort of time
averaging is required to estimate spiking probabilities,
spike rates of individual neurons are known to be
non-stationary. An increasing number of analyses ap-
plicable to neuronal ensemble recordings have been
developed that address this limitation, leading to an
array of methods, each of which have various strengths
and weaknesses.

Cross-correlational analyses seek to establish a func-
tional relationship between the firing times of one neu-
ron with respect to that of another neuron; the
principle method of which has been the construction of
the cross-correlation histograms (CCH) (Perkel et al.,
1967). In the classical CCH, spike timing differences
between the ‘reference’ spike train and the ‘target’ spike
train are constructed without respect to the stimulus
cycle. To normalize for stimulus induced changes in
firing rates between the two neurons, the ‘shift predic-
tor’ is subtracted from the CCH to remove any stimu-
lus-locked activity. Alternatively, one can use the joint
peristimulus time histogram (Aersten and Gerstein,
1989) to determine the temporal structure of correlated
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recorded neurons. As methods for recording from
ensembles of neurons improve and the number of
simultaneously recorded neurons continue to increase,
the need for more appropriate methods for data analy-
sis becomes even more apparent.

Other methods that go beyond pairwise interactions
have been developed: gravitational clustering (Gerstein
and Aertsen, 1985), spike pattern search algorithms
(Abeles and Gerstein, 1988), and hidden Markov mod-
els (HMM) (Gat and Tishby, 1993; Radons et al., 1994;
Seidemann et al., 1996). Gravity analysis is a popula-
tion technique that treats all the neurons of the
recorded ensemble as a single entity, clustering neurons
based on synchronous firing. The typical ‘read-out’ for
this method, however, is based on correlations between
pairs of neurons. Spike pattern search algorithms allow
for the detection of precise, reoccurring spike patterns
across neurons and time to be detected and identified.
But, by design, these methods do not provide trial-by-
trial estimates of the detected patterns and so they do
not allow for quantification of information represented
in the identified patterns. On slightly broader time
scales (i.e. tens of milliseconds), HMMs have been
applied to detect concomitant firing-rate modulations
between members of the recorded neuronal ensemble.
The goal of these analyses is to determine the variety of
firing patterns exhibited across an ensemble of neurons
(Seidemann et al., 1996). Thus, HMMs appear to an-
swer very different questions about correlated neuronal
firing than those addressed by the other methods de-
scribed above and in this paper.

Another approach to the problem of correlated neu-
ronal firing was taken by Nicolelis and Chapin (1994)
when they applied multivariate statistical methods for
dimension reduction, such as PCA, to neuronal ensem-
ble spike train data. The major advantage of this
approach over the cross-correlational and pattern anal-
ysis methods described above is that the method explic-
itly provides a representation of correlated neuronal
firing on a bin-by-bin and trial-by-trial basis. This
allows for quantitative estimates of the degree to which
correlated neuronal firing, as represented by PCA or
ICA, may vary with the behavioral performance of an
animal. Moreover, it has been shown recently that these
signals can be used to control external devices such as
robotic arms (Chapin et al., 1999). Thus, in addition to
having theoretical applications in determining the types
of neuronal codes that might arise through neuronal
ensemble interactions (e.g. Laubach and Nicolelis,
1998), multivariate statistical methods have great po-
tential for practical applications in clinical
neurophysiology.

Here, we compared how PCA- and ICA-based meth-
ods detected and reconstructed epochs of correlated
firing across ensembles of simultaneously recorded cor-
tical neurons. We observed that while PCA was able to

resolve a variance-weighted version of the average sig-
nal across the ensemble, it was unable to identify
sparsely distributed interactions across the ensembles.
By contrast, each of the methods for ICA that was
examined was able to account for sparsely distributed
interactions. Therefore, it appears that PCA is an excel-
lent method for accounting for the overall excitability
and broad correlations between large groups of neu-
rons. By contrast, the ICA-based methods used here are
better suited for finding higher-order correlations (i.e.
synchronous firing) between the activity of more limited
portions of a neuronal ensemble.

Several methods for ICA were compared in this
study. For the most part, the different algorithms pro-
duced similar results, despite the differences in their
underlying nature (i.e. algebraic versus iterative) or the
form of the contrast function used (e.g. kurtosis, tansig,
Gaussian). The simulations showed that the selectivity
of the various methods was roughly equivalent, with
the major differences being in the range of variability
exhibited by different methods. By contrast, our appli-
cation of these methods for real neuronal ensemble
data found that the xICA algorithm performed better
than the other methods. This may be due to the nature
in which the xICA network is updated, which is differ-
ent from the other methods. Prior to xICA, the data
series are randomly permuted such that the order of
bins is not longer that obtained in the original data set.
Thereafter, the network is ‘trained’ on randomly chosen
time epochs that are arranged in frames with as many
elements as there were bins on a single trial. Thus, the
xICA algorithm iterates through various instances of
the neuronal data in a way that should overcome any
explicit episodes of non-stationarity in the data set.
This is not the case for the JADE and fast ICA
algorithms, which operate on the data in ‘batch’ mode,
with all bins used to estimate the weights for the ICA
model. It may be that the xICA procedure overcomes
non-stationarities in the neuronal data that limited the
success of the other methods. Given that the limited
amount of data in the example used in this paper (70
trials) is actually typical of most real behavioral neuro-
physiological data sets, we suspect that xICA maybe
the best choice for future applications of ICA-based
methods for analyzing neuronal ensemble data.

Despite the advantages of ICA over cross-correla-
tional methods, the method has a number of limita-
tions. Our experience with ICA has shown that it will
work appropriately when the following conditions are
met: (1) firing probabilities are relatively low; (2) corre-
lations within sub-ensembles are relatively high; (3) the
temporal precision of the neuronal spike trains is high.
For example, if several independent sources for neu-
ronal synchronization effect activity in a given subset of
a neuronal population (i.e. spatial overlap of multiple
sources), then a given independent component may
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represent a linear combination of the sources rather
than a true independent source (Makeig et al., 1999).
Such a situation is likely to arise in most network
level studies of brain function, suggesting that more
work is needed to further improve methodologies for
analyzing the high-dimensional data sets that are rou-
tinely acquired using modern methods for neuronal
ensemble recording.

The techniques described in this paper may soon be
extended to address a genuinely new question for ex-
perimental neuroscience: the role of interactions be-
tween multiple brain areas. For example, if arrays of
recording electrodes are placed in several cortical ar-
eas that are know to be connected anatomically, then
the methods for ICA used in this paper could be
applied to each area to find a set of components that
account for correlated firing within each cortical area.
Statistical pattern recognition methods could then be
used to evaluate the contributions of the individual
cortical areas to the collective representation of the
animal’s behavior, such as in a reaction-time task. In
addition, other methods, such as the method of di-
rected coherence (Sameshima and Baccalá, 1999)
could be used to determine the direction of informa-
tion flow between multiple cortical networks using a
reduced set of variables that are provided by the in-
dependent components. The exploration of these is-
sues, especially when applied to simultaneous
recordings from multiple areas of cortex, is likely to
become one of the main topics of research in systems
neuroscience.
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