
Journal of Neuroscience Methods 94 (1999) 121–140

Principal component analysis of neuronal ensemble activity reveals
multidimensional somatosensory representations

John K. Chapin a,*, Miguel A.L. Nicolelis b

a Department of Neurobiology and Anatomy, MCP Hahnemann Uni6ersity, 3200 Henry A6e., Philadelphia, PA 19129, USA
b Department of Neurobiology, Duke Uni6ersity Medical Center, Box 3209, Durham, NC 27710, USA

Received 25 July 1999; accepted 9 August 1999

Abstract

Principal components analysis (PCA) was used to define the linearly dependent factors underlying sensory information
processing in the vibrissal sensory area of the ventral posterior medial (VPM) thalamus in eight awake rats. Ensembles of up to
23 single neurons were simultaneously recorded in this area, either during long periods of spontaneous behavior (including
exploratory whisking) or controlled deflection of single whiskers. PCA rotated the matrices of correlation between these n neurons
into a series of n uncorrelated principal components (PCs), each successive PC oriented to explain a maximum of the remaining
variance. The fact that this transformation is mathematically equivalent to the general Hebb algorithm in linear neural networks
provided a major rationale for performing it here on data from real neuronal ensembles. Typically, most information correlated
across neurons in the ensemble was concentrated within the first 3–8 PCs. Each of these was found to encode distinct, and highly
significant informational factors. These factor encodings were assessed in two ways, each making use of fact that each PC
consisted of a matrix of weightings, one for each neuron. First, the neurons were rank ordered according to the locations of the
central whiskers in their receptive fields, allowing their weightings within different PCs to be viewed as a function of their position
within the whisker representation in the VPM. Each PC was found to define a distinctly different topographic mapping of the
cutaneous surface. Next, the PCs were used to weight-sum the neurons’ simultaneous activities to create population vectors (PVs).
Each PV consisted of a single continuous time series which represented the expression of each PC’s ‘magnitude’ in response to
stimulation of different whiskers, or during behavioral events such as active tactile whisking. These showed that each PC
functioned as a feature detector capable of selectively predicting significant sensory or behavioral events with far greater statistical
reliability than could any single neuron. The encoding characteristics of the first few PCs were remarkably consistent across all
animals and experimental conditions, including both spontaneous exploration and direct sensory stimulation: PC1 positively
weighted all neurons, mainly according to their covariance. Thus it encoded global magnitude of ensemble activity, caused either
by combined sensory inputs or intrinsic network activity, such as spontaneous oscillations. PC2 encoded spatial position contrast,
generally in the rostrocaudal dimension, across the whole cutaneous surface represented by the ensemble. PC3 more selectively
encoded contrast in an orthogonal (usually dorsoventral) dimension. A variable number of higher numbered PCs encoded local
position contrast within one or more smaller regions of the cutaneous surface. The remaining PCs typically explained residual
‘noise’, i.e. the uncorrelated variance that constituted a major part of each neuron’s activity. Differences in behavioral or sensory
experience produced relatively little in the PC weighting patterns but often changed the variance they explained (eigenvalues)
enough to alter their ordering. These results argue that PCA provides a powerful set of tools for selectively measuring neural
ensemble activity within multiple functionally significant ‘dimensions’ of information processing. As such, it redefines the ‘neuron’
as an entity which contributes portions of its variance to processing not one, but several tasks. © 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

One of the central concepts of contemporary neuro-
science is that major brain functions are executed* Corresponding author.
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through the joint actions of ensembles of neurons (Erick-
son, 1968; Churchland, 1989). This mode of computation
may have similarities to parallel distributed processing
(PDP; Rumelhart et al., 1986a), in which information is
not localized within individual neurons, but instead is
distributed across neuronal populations. Thus, no single
neuron is necessary for any one computation, yet each
neuron can participate in a large number of computa-
tions. Computations involve resolving information em-
bedded in patterns of correlated activity among large
populations of afferent inputs.

Assuming that such distributed processing occurs in
real neuronal populations, how might it be studied?
According to theory, information which is distributed
across a neuronal ensemble should be manifested as
patterns of correlated activity among the neurons. Unfor-
tunately, it is very difficult to resolve the underlying
structure of information contained within large numbers
of pairwise correlations between simultaneously recorded
neurons. As an alternative, this paper examines the use
principal components analysis (PCA) for analysis of real
distributed neuronal networks. PCA is a classical tech-
nique for obtaining an optimal overall mapping of
linearly dependent patterns of correlation between vari-
ables (e.g. neurons). PCA provides, in the mean-squared
error sense, an optimal linear mapping of the ‘signals’
which are spread across a group of variables. These
signals are concentrated into the first few components,
while the ‘noise’, i.e. variance which is uncorrelated across
variables, is sequestered in the remaining components.
PCA has been used extensively to resolve temporal
patterns in neurophysiological recordings (McClurkin et
al., 1991; Kjaer et al., 1994). Here, PCA was used to map
the neuronal ensemble information in up to 23 simulta-
neously recorded neurons in the vibrissa-sensory region
of the ventral posterior medial (VPM) thalamus of awake
rats, during spontaneous behaviors (including ex-
ploratory whisking) and controlled deflection of single
whiskers.

A further rationale for using PCA to map patterns of
neuronal correlation is that it is known to be mathemat-
ically equivalent to the general Hebb algorithm for
learning in linear neural networks (Oja, 1982, 1989, 1992;
Bourlard and Kamp, 1988; Baldi and Hornik, 1989;
Sanger, 1989; Hertz et al., 1991; Hrycej, 1992). Most self
organizing artificial neural network models utilize some
variant of Hebbian learning, in which synaptic strengths
are modified according to the temporal correlation of the
synaptic inputs with post-synaptic neuronal activation.
Since post-synaptic activation is normally caused by
increased synaptic input, the Hebb rule increases synaptic
strengths according to their temporal correlation with
other inputs.

The ultimate aim of this study was to record activity
of neuronal ensembles at the thalamic level of the
somatosensory system, and then to use PCA to evaluate

the mapping of sensory information, providing clues as
to how thalamic signals are transformed in their transmis-
sion through the cortical circuitry. For this purpose it was
necessary to obtain recordings of neuronal activity during
long periods of spontaneous behavior, hopefully to
obtain a representative sample of the normal repertoire
of information handled by these neurons. While several
investigators have demonstrated that experience depen-
dent factors can influence patterns of sensory mapping
in the neocortex, no study has yet employed actual
simultaneous recordings to evaluate how the sensory
information might be transformed by Hebb-like learning.
For this purpose, PCA is advantageous in that it provides
a mathematically well understood technique for mapping
the informational factors comprising linearly dependent
patterns of covariance in a neuronal ensemble. On the
other hand, independent components analysis (ICA) is
more appropriate for identification of nonlinear and/or
independent patterns of covariance (Laubach et al.,
1999).

2. Materials and methods

2.1. Recording procedures

Complete methods for the simultaneous many-neuron
recording techniques are discussed in detail elsewhere
(Shin and Chapin, 1990; Nicolelis et al., 1993, 1995;
Nicolelis and Chapin, 1994). Briefly, a multi-channel unit
recording/discrimination system (Plexon Inc, Dallas, TX)
single neuron action potentials were recorded through
arrays of 16 microwire electrodes (25 or 50 mm diameter,
Teflon insulated stainless steel; NB Labs, Dennison, TX)
implanted across the whisker representation in the VPM
in Long–Evans (Hooded) rats. Recording experiments
commenced approximately 1 week following surgery.
Once in the recording chamber, a wiring harness was
plugged onto the previously implanted headstage. The
multi-neuron recording system allowed simultaneous
amplification, bandpass filtering, window discrimination
and computer storage of spike-times from large numbers
of single neurons. Approximately 90% of the microwire
electrodes yielded at least one discriminable waveform
(signal/noise ratio at least 5). Online single unit discrim-
ination used digital signal processors (DSPs) incorporat-
ing both voltage–time window and principal component
clustering waveform discrimination algorithms. The sam-
ple experimental data sets utilized here included up to 23
neurons recorded simultaneously in the VPM thalamus.

Receptive fields (RFs) were quantitatively character-
ized by mechanically displacing single whiskers using a
computer controlled vibromechanical actuator. Eight to
20 different facial whiskers were stimulated 300–600
times apiece (3° deflections, 0.1 s step pulses, delivered
at 1 Hz), yielding a highly quantitative data base for
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evaluation of these neurons’ sensory properties. Such
data obtained from the same neurons under awake
and/or anesthetized conditions yielded a center RF for
each neuron. After the awake animals were highly
habituated to the whisker stimulation procedure they
rested quietly without moving.

Recordings were also obtained during 20- to 60-min
periods of spontaneous behavior, which included
episodes of rest, exploratory whisking, grooming and
locomotion. During recordings in awake, freely moving
animals, the rat’s behavior was continuously monitored
and stored on video tape. A Lafayette Super-VHS
video analysis system was used for field-frame analysis
of these video tapes (1/60th s resolution). Synchroniza-
tion of the videotape with experimental recording data
was achieved by using a 100 Hz output from the data
acquisition computer (Motorola VME delta system) to
update a Thalner video counter-timer (Ann Arbor,
MI), which produced a time-stamp with 10 ms resolu-
tion, displayed on each fieldframe.

Analysis of recorded data, including the PCA al-
gorithm described below, was carried out using soft-
ware developed by JKC to run on a Motorola VME
delta system. Further statistical and graphical analyses
were carried out using the CSS-Statistica package
(Tulsa, OK) on principal components (PCs).

2.2. Statistical techniques

2.2.1. Co6ariance, cross-correlation and
cross-correlograms

Single neuron discharge was quantized by integrating
over time bins ranging from 5 to 500 ms (with 10 ms as
a standard). For statistical analysis, each neuron consti-
tuted a ‘variable’, and its spike count for each bin
(generally over the whole experiment) was a ‘sample’.
First, correlation or covariance matrices were calcu-
lated. Statistical significance of these correlation coeffi-
cients was calculated by the formula,

r= tSr

where t is Student’s t-test, and

Sr
' 1−r2

(n−2)

where n is the number of data samples.

2.2.2. Principal components analysis (PCA)
The theory of principal components states that every

symmetrical covariance or correlation matrix relating p
random variables X1, X2,…,Xn can be transformed
into particular linear combinations by rotating the ma-
trix into a new coordinate system. This rotation is
produced by multiplying each of the original data vari-
ables by their appropriate weighting coefficients. For
each component, these weights comprise a vector called

an eigenvector, and the variance ‘explained’ by its
eigenvalue. The original matrix is rotated such that the
axis defined by the first principal component (PC1) is
aligned in the direction of greatest variance, hence
maximizing the eigenvalue. To obtain the second com-
ponent (PC2) the matrix is rotated around the PC1 axis
to obtain a second eigenvector which again contains the
greatest possible amount of remaining variance. This
procedure is repeated until a set of N orthogonal (un-
correlated) components is obtained, arranged in de-
scending order of variance. In this transformation,
none of the information contained within the original
variables is lost, and the derived components can be
statistically manipulated in the same way as the original
variables. Moreover, the transformation is useful be-
cause most of the significant total variance (i.e. corre-
lated neuronal information) is concentrated within the
first few uncorrelated PCs, while the remaining PCs
mainly contain ‘noise’ (i.e. uncorrelated neuronal infor-
mation). The first few PCs not only provide a simpler
and more parsimonious description of the covariance
structure, they also concentrate the information which
is normally spread across multiple variables (neurons)
into a single, more statistically useful ‘factor’.

The squares of these weighting coefficients represent
the correlations of each variable (neuron) with the PC.
Since each component is apportioned some fraction of
the total variance of the neuron, the sum of squared
coefficients across each row must equal 1.0. A further
constraint is that the sums of squared coefficients for
each component must also equal 1.0. Thus the total
variance contained in the ensemble can be represented
either in terms of the combination of neurons (i.e.
across rows in the eigenvector matrix), or the combina-
tion of principal components (i.e. across columns).

2.2.3. Characterization of statistical error
Although PCA is a distribution free method it is

sometimes useful to assess the statistical significance of
the eigenvalues and principal component coefficients
obtained. The following formulas were used here for
calculation of S.E. of eigenvalues,

s(l)=lh×
' 2

n−1
(4)

and principal component coefficients:

s(bhj)=
'�

(1/n−1)lh
� %

p

k=1

lk/(lk−1h)2(bkj
2 )
�n

(5)

where n is the number of samples, lh is the eigenvalue
of component h, bhj is the jth coefficient of the hth
component, and p is the total number of components.

These formulae apply to principal components analy-
ses carried out on covariance matrices. However, since
correlation matrices are equivalent to covariance ma-
trices calculated from standardized data, the S.E. can
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be considered appropriate when standardized data are
used to construct a covariance matrix. These formulas
are technically correct except when used for data with
small numbers of samples and for severely non-Gaus-
sian distributed data. The typical situation for the
simultaneous neural recordings here is to obtain a very
large (103 to 2×105) number of samples, with near-
Poisson distributed data. As shown in Fig. 1, these data
converge on normality with increasing sample integra-
tion times.

2.2.4. Interpretation of PCA results
Since PCA involves successive rotations of a covari-

ance matrix, the configuration of each derived PC is a
function of the previous (lower numbered) PCs. Thus,

the PCs may not each represent a single factor underly-
ing the population covariance, but instead may provide
rules for separating between such factors. PCA is not,
therefore, the method of choice for separating between
completely independent factors, but is an excellent tech-
nique for defining a multidimensional mapping scheme
for linear representation of a set of interdependent
factors. As such, PCA should be ideal for analyzing
processing of sensory information which normally in-
volves interdependent factors, such as movements of
stimuli over continuous receptor surfaces.

2.2.5. Using PCA to construct eigenfunctions
After their derivation here, the PCs were then used to

create eigenfunctions by using the PC weights to

Fig. 1. Eigenvalue rotation of a two-neuron cluster plot. (A) Scatterplot showing the distribution of joint activity states in an ensemble of two
neurons (1 and 7) recorded simultaneously in the PrV nucleus. (Both of these were among 47 recorded across multiple levels of the somatosensory
system.) The position of each point depicts the firing rates of these two neurons over a single 500-ms time interval in a continuous experiment
lasting 1800 s. The line through this point cluster shows their linear regression. Their correlation coefficient is 0.61 (P�0.01). Since the coordinates
of these points are integers, many overlap. (B) Scatterplot showing the same data after standardization by subtracting the mean and then dividing
by the S.D. This removes excessive biasing of neurons with higher firing rates. (C) Half-normal probability plot showing that integrated spiking
data converges on a normal distribution. The solid line shows the expected distribution of points in a perfectly normal (Gaussian) distribution.
Points show the standardized scores from neuron 7 which were used to construct Fig. 3B. (D) Scatterplot shows the same data from neurons 1
and 7 after axis rotation using PCA. The best linear fit through the original points shown by the regression line in Fig. 1B is now oriented perfectly
along (i.e. is ‘explained’ by) the first principal component (PC1), with the second principal component explaining the ‘noise’ in the perpendicular
axis. The coordinates of the points in this new space defined by components 1 and 2 were calculated as weighted sums (i.e. the dot product) of
the original standardized scores (from Fig. 1B). See text for principal component weights used to achieve this rotation.
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weight-sum the time integrated data stream from each
of the original neurons. Each eigenfunction is therefore
a continuous time series containing an analog value for
each time bin within the experiment. Typically, these
time bins are chosen to be the same as the time
integrals used to calculate the original correlation ma-
trix used for the PCA. As shown in the equation below,
each point Ypt in an eigenfunction is defined as the
linear combination of the standardized, time integrated
spike counts recorded during that time bin from the
original neurons, Xpt multiplied by the appropriate
eigenvector weights Bp.

Y1=e %1X=e11X1+e21X2+…ep1Xp

Y2=e %1X=e12X1+e22X2+…ep2Xp

Yp=e %1X=e1pX1+e2pX2+…eppXp

where e %i are eigenvectors, and eij are eigenvector
weightings.

In this case Xi is the spike count of neuron i within a
particular time bin. Though Yp is commonly weighted
by the eigenvalue l, this is unnecessary for our applica-
tions. Also, when correlation matrices are used as input
for the PCA it is necessary to first standardize Xi by
subtracting the mean and dividing by the S.D. The
eigenfunctions constructed using this technique consti-
tute composite variables which, in statistical terms, can
be treated much like the original variables (neurons).
Since they are constructed from summations of
weighted and standardized data, the eigenfunction mag-
nitudes can be thought of in terms of ‘population’ firing
rates, with units in Hz, but unrelated to actual firing
rates of single neurons. In the figures below, eigenfunc-
tions are used like traditional neurophysiological data,
in stripcharts and peri-event averages.

3. Results

3.1. Data sets

This investigation utilized data obtained from a series
of experiments in which ensembles of single neurons
were simultaneously recorded through microwire elec-
trode arrays implanted at different levels of the trigem-
inal somatosensory system in awake Long–Evans
(Hooded) rats. A total of 707 neurons were recorded at
various levels of the trigeminal somatosensory system in
20 rats during 497 different recording experiments rang-
ing from 5 to 60 min in duration. Of these, 481 neurons
were recorded in the ventral posteromedial (VPM) tha-
lamic nucleus, specifically in the subregion which repre-
sents the mystacial whiskers. Of these, 127 VPM
thalamic neurons in eight animals (ranging from eight
to 24 neurons/animal) were recorded under experimen-
tal conditions meeting acceptable criteria for inclusion

in this study. These conditions required that at least
eight well discriminated single neurons be simulta-
neously recorded in the VPM thalamus of an awake rat
over at least one 20- to 40-min period of spontaneous
exploratory whisking behavior, and also over a number
of discrete whisker stimulation experiments sufficient to
quantitatively define the RFs of each neuron.

These animals were typically first recorded during a
long period of spontaneous exploratory behavior in
which the animal used its whiskers to explore objects in
the experimental chamber. Post-hoc analyses of syn-
chronized videotape records of this behavior typically
show that rats spend about 50% of their time engaging
in spontaneous whisking movements, especially includ-
ing active sweeping of the mystacial whiskers tactile
objects. In subsequent experiments under awake and
anesthetized conditions the RF properties of the same
neurons were quantitatively measured using a com-
puter-controlled vibromechanical actuator to repeti-
tively displace single whiskers or multi-whisker bundles.
Thus, these experiments measured the responses of
trigeminal somatosensory system neuronal ensembles to
sensory stimulation either delivered passively to single
whiskers or obtained actively through exploratory
movement of the same whiskers over objects. The data
sets were thus ideal for defining neuronal population
information (using eigenfunctions) within somatosen-
sory neuronal ensembles in the context of active tactile
exploration.

3.2. Example of analysis

In a typical experimental protocol, spiking data from
23 well discriminated VPM neurons were simulta-
neously recorded over a single experimental day. First,
the RFs of each neuron (i.e. their principal whiskers)
were defined by aural monitoring of unit activity. Next,
the 23 neurons were recorded during a 1821.49 s period
of spontaneous behavior that included several long
episodes of exploratory whisking. Subsequently, nine 5-
to 15-min experiments were conducted to measure the
same neurons’ responses to controlled vibromechanical
stimulation of each of nine single whiskers.

In post-hoc analysis, a correlation matrix between
these 23 neurons was first calculated from the data
recorded during the spontaneous exploratory period.
This matrix revealed positive correlation coefficients (r)
ranging from 0.0054 to 0.39. Despite the relatively low
r values, they are highly statistically significant (S.E.M.
0.00354) because of the large number of samples
(72 859, using 25-ms time integrals). Thus r\0.011 was
the confidence limit for a correlation significance at the
PB0.001 confidence level. In this matrix of 242 ((n−
1)2%2) correlation pairs, all but one r exceeded zero by at
least this confidence limit. Moreover, the average r in
this matrix was 0.137, i.e. 12.45 times the confidence
limit.
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3.3. Using PCA to map co6ariance structure

The ‘eigenvalue decomposition’ utilized by PCA in-
volves rotating the covariance matrix to define a new
set of orthogonal axes oriented in directions of greatest
covariance. As shown in Fig. 1, this can be visualized as
a rotation of a scatterplot in N-dimensional space in
which each point defines the state of an N-neuron
ensemble within a particular time interval. To illustrate,
Fig. 1A shows a 2D scatterplot which depicts the
correlation between the time integrated activities of two
simultaneously recorded neurons in the VPM (unit 1 vs
unit 7). Fig. 1A was constructed by quantizing the 1821
s experiment into 3642 bins (using 500-ms time integrals
for illustration purposes). The spike counts of the two
neurons within each bin are plotted as a point (vector)
in an X–Y space, such that the point’s position repre-
sents the ‘functional state’ of the two-neuron ensemble.
The r-value of these neuron’s correlation was 0.61,
which is highly significant (P�0.001). This high positive
correlation can be visualized by the preponderance of
points lying along the 45° line in Fig. 1A.

Though PCA can utilize either covariance or correla-
tion matrices, use of the former was discontinued be-
cause the PCA results tended to be dominated by the
variance of a few rapidly firing neurons. To more
accurately measure the co-activity of different neurons,
this study utilized correlations, which are equivalent to
covariances between standardized variables. Fig. 1B
shows the scatterplot in Fig. 1A after standardization.
Standardization of neuronal discharge rates (by sub-
tracting the mean and dividing by the S.D.) normalized
the activity rates of all neurons to 0.0, and their vari-
ances to 1.0. Even though PCA is a distribution free
method for transformation of multivariate data, infer-
ences about the statistical significance of eigenvalues
and eigenvector coefficients are based on normally dis-
tributed data. Though we have found that integrated
spike-train data tend to approximate Poisson or super-
Poisson distributions, they tend to converge on a nor-
mal (Gaussian) distribution as they are integrated over
longer time periods (demonstrated in Fig. 1C) or larger
populations. Thus, the issue of data distribution can be
handled in several ways. First, large numbers of data
samples are used. Most parametric statistical techniques
are quite robust against distribution anomalies when n
is large (e.g. over 100). Second, Poisson distributed
integrated spike train data converge on a normal distri-
bution when larger integration times are used, or when
large numbers of neurons are integrated into an eigen-
function. Finally, one can utilize square-root transfor-
mations to force Poisson distributed data into a more
normal distribution. We have used such transforma-
tions routinely but have not found the results to be
substantially different from analyses using untrans-
formed data.

3.4. Calculation of principal components

Fig. 1D illustrates the use of PCA to rotate the
scatterplot in Fig. 1B, which itself was constructed by
standardizing the data in Fig. 1A. The rotation of the
3D scatterplot was produced by using PCA-derived
coefficients for each component (PC1: 0.707 for both
neurons; PC2: 0.707 and −0.707 for neurons 2 and 7,
respectively). The set of coefficients for each PC defines
a rotation vector (eigenvector) which, by dot product
multiplication of the coordinates of the points in Fig.
1B, produced the scatterplot in Fig. 1D. This counter-
clockwise rotation produced a new X-axis (now called
PC1) which is aligned along the long axis of the scatter-
plot. The position of a point along this new axis now
constitutes an optimal measure of whatever factor(s)
were originally responsible for producing the correlated
discharge between the neurons.

The eigenvalues, representing the percentage of the
total variance explained by each of these principal
components were calculated as 70.13 for PC1, and
29.87 for PC2. PC1 can be considered as a mathemati-
cal definition of a new coordinate system which paral-
lels the major factor of interaction between these
neurons, defined purely in terms of their correlation in
this data set. PC2, which must be orthogonal to compo-
nent 1, accounts for the remainder of the variance,
which may represent noise, or a less significant factor of
interaction between the variables.

3.5. Using PCA to map functional relationships within
neuronal ensembles

Distinct, functionally significant patterns of PC
weightings emerged when the above techniques were
applied to data from larger neuronal ensembles. Fig. 2
illustrates the PC weightings obtained through analysis
of the 23-neuron data set discussed above. To investi-
gate the relationship between these weightings and the
topographic representation of whiskers in the VPM,
each neuron was graphically rank ordered according to
the rostrocaudal position of its RF center, i.e. its princi-
pal whisker, an accurate indicator of its actual position
in the VPM. This provided visualization of the spatial
attributes of the PC weighting patterns, allowing them
to be interpreted rather like a receptive field (RF).

Fig. 2A provides a good example of the multi-topo-
graphical patterns found in PC weightings throughout
this study. PC1 (top) invariably contained relatively
homogeneous, all positive weightings, and was there-
fore essentially non-topographical. As such, PC1 pri-
marily encoded the magnitude of global activity in this
ensemble: the neurons most weakly weighted in this PC
were found to be those which had very weak responses
to sensory stimuli. Neurons 21–23 (from left) exhibited
no clear RFs, and neurons 6 and 8–10 exhibited very
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Fig. 2. Weighting coefficients of principal components derived from
the same set of 23 neurons are similar over different experimental
paradigms. (A) Linear graphs depicting weighting coefficients of
principal components (PCs) 1–6 calculated from simultaneous
recordings of 23 neurons in the VPM thalamus during an 1821.49 s
sequence of spontaneous behavior in an awake rat. The 23 neurons
are rank ordered on the X-axis according to the rostrocaudal loca-
tions of the centers of their RFs on the mystacial whiskers. The
RF centers were quantitatively determined using peri-whisker-stimu-
lation histograms. The mystacial whiskers in rat are commonly
divided into rows A–E (dorsal-ventral), and columns 1–7 (caudal-
rostral). The much smaller guard hairs (GH) are rostral to the
mystacial whiskers. When more than one neuron was centered on
the same whisker (e.g. the three neurons on D6) they were rank
ordered according to the value of their coefficients in PC2. Three
neurons did not have RFs on the whiskers (labeled ‘N’). (B) Simi-
lar linear graphs depicting principal components derived from
recordings of the same neurons in an experiment (20 min after that
in (A)). For most of this experiment the animal remained still,
allowing whisker E2 to be deflected using a computer controlled
hand-held vibromechanical stimulator. The X-axis contains the
same rank ordering of neurons as in (A). Note that the PCs are
similar to those in (A), but are reversed in polarity and changed in
order (e.g. PC3 and PC4 here are reversed in polarity and order
compared to (A)).

weak sensory responses even though they had RFs
centered on whisker D4. In contrast, PC2 almost lin-
early encoded the neurons according to the rostrocau-
dal position of their principal whiskers on the face.
(The D6 whisker was weighted most negatively; the E2
whisker most positively.) To a lesser extent, PC3 en-
coded dorsoventral position, positively weighting the
two neurons with RFs in the caudal C-row (both
covering C2, but also extending to the D-row), and
negatively weighting the two neurons with RFs in the E
row.

Regression analysis was used to statistically validate
this observation that PCs 2 and 3 defined gradients
across the whisker pad. The weights for PCs 1–4
(dependent variables) were regressed against the spatial
positions of the neurons’ RF centers (independent vari-
ables). These RF centers were defined either in vertical
coordinates (whisker rows A– E, numbered 1–5) or
horizontal coordinates (whisker columns 1–6, and
guardhairs=7). When the RF centers covered multiple
whiskers, the midpoint between them was used. The
three neurons without RFs were omitted. When PCs
1–4 were regressed against the neurons’ column num-
ber, PC2 yielded a coefficient of determination (R2) of
0.69 (F=41.4; P=5×10−6), while the R2s of the
other PCs were insignificant (PC1: 0.006, PC3: 0.009,
PC4: 0.0003). Thus, the rostrocaudal positions of center
RFs on the whisker pad were robustly and selectively
encoded by PC2. Similarly, dorsoventral position was
selectively encoded by PC3, even though this sample
contained relatively few cells with RFs in the C and E
rows: When regressed against row number, PC3 yielded
an R2 of 0.51 (P=0.0003), while the R2s of the other
PCs were insignificant (PC1: 0.02, PC2: 0.01, PC4:
0.008). As described below (Fig. 3), such results were
quite consistent across the eight animals used for this
study.

Higher numbered components encoded information
on statistical outliers which here tend to reflect higher
spatial frequencies. For example, PC4 differentiated
between neurons with RFs in the caudal D row vs E
row. PC6 differentiated between neurons with RFs in
the rostral whisker pad. Finally, PC5 positively
weighted the neurons without RFs. PC5 also negatively
weighted neurons with RFs centered on whiskers E2
and D6. This seemingly unlikely combination is remi-
niscent of our previously reported finding (Nicolelis et
al., 1993, 1995) that many neurons which respond at
short latency (4–10 ms) to stimulation of caudal
whiskers (e.g. E2) often respond at longer latency (15–
25 ms) to stimulation of the rostral-most whiskers (e.g.
D6). Thus, the higher numbered principal components
have successively more complex weighting patterns,
whose functional significance is less clearly related to
absolute RF position.
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3.6. PCA results are similar e6en when deri6ed in
different conditions

Additional evidence for the high statistical reliability
of these components is provided by the observation
that the components changed only slightly when calcu-
lated from repeated experiments on the same neuronal
ensembles. As is illustrated in Fig. 2A,B, this consis-
tency in PCs was observed even when different time
bins were used (10 ms in Fig. 2B vs 25 ms in Fig. 2A).
In Fig. 2B the neuronal weights are rank ordered
exactly as in Fig. 2A, revealing remarkably similar
overall weighting patterns: PC2 is virtually the same in
Fig. 2A,B, except that its polarity is reversed (insignifi-
cant in PCA). PC3 in Fig. 2A is equivalent to PC4 in
Fig. 2B, although their polarities are reversed. This
reversal of PCs 3 and 4 suggests a relatively slow time
course of interactions between neurons with dorsal vs
ventrally located RFs.

The weightings in Fig. 2C were remarkably similar to
those in Fig. 2B, even though the PCs in Fig. 2C were
derived from recordings of the same neurons obtained
40 min later during an experiment in which the E2
whisker was repetitively stimulated during periods of
behavioral immobility (comprising about 80% of total
experimental time). The only major difference between
PCs 1–3 in these experiments is that PC3 in Fig. 2C
reveals a relatively greater weighting of whisker E2,
which was selectively stimulated during this experiment.
The higher numbered components also exhibited re-
markable equivalences, though altered in polarity and
eigenvalue: PC5 in Fig. 2B,C is similar in weighting
pattern, though reversed in polarity. Moreover, both
are similar to PC6 in Fig. 2A. Finally, PC6 in Fig. 2A
and PC5 in Fig. 2B,C contain similar weightings of the
neurons on the left side of the figure (i.e. C5–D6
through D4).

To conclude, the basic weighting structure of the PCs
derived from this neuronal ensemble remained remark-
ably constant over experimental time and over changes
in bin size and behavior (e.g. spontaneous active whisk-
ing vs passive whisker stimulation). The proportions of
time spent during these different behaviors were
reflected more in the PC eigenvalues (and therefore the
ordering of PCs) than in the PC weightings. Further-
more, the remarkable similarities between the compo-
nents in Fig. 2B,C (which both use 10-ms bins)
demonstrates a high level of statistical reliability of
these calculations, even when relatively small data sets
were used (Fig. 2C was derived using a 550 s experi-
ment, vs 1821 s in Fig. 2A,B).

3.7. Statistical significance of PCs

The statistical significance of PCs can be assessed
through calculation of S.E. of the eigenvalues and

Fig. 3. Weighting coefficients of principal components derived from
VPM neuronal ensembles recorded in additional animals. All were
constructed using the same technique as in Fig. 5: Correlation
matrices were constructed from neural activity measured during all
10-ms time intervals in long periods of spontaneous exploratory
whisking behavior. RF locations were determined from quantitative
RF mapping experiments carried out just after the spontaneous
behaviors. Graphs depict the weighting coefficients in PC1–3 (‘PC
WEIGHT’ on Y-axis) for each of the neurons, which are rank
ordered along the X-axis according to rostrocaudal location of their
RF centers (‘WHISKER’). (A) Three line plots depict weighting
coefficients of PC1–3, obtained from a PCA carried out on data from
21 VPM neurons simultaneously recorded during an 1545.43 s se-
quence of spontaneous exploratory whisking behavior in an awake
rat. The RF centers of these 21 neurons ranged from the guard hairs
just rostral to rows E and D (‘GhE’ and ‘GhD’) to the caudal large
whiskers in the C, D, and E rows. When these were rank ordered
according to rostrocaudal position, the PC2 weights reveal a roughly
linear progression wherein the neurons with rostral RFs (GhE) are
most negatively weighted, while those with caudal RFs (E2) are most
positively weighted. PC3 weights neurons according to the dorsoven-
tral position of their RFs: those with dorsal RFs (on the C1 and C2
whiskers) are most negatively weighted, while those with ventral RFs
(E-row) are most positively weighted. (B) Similar line plots depict
PCs 1–3 derived from eight VPM neurons in another rat, simulta-
neously recorded during 1812.965 s of spontaneous exploratory
whisking behavior. The neuronal weightings in PC2 defined a roughly
rostrocaudal gradient, most positively weighting the guard hairs
rostral to the A-row (GhA), and most negatively weighting the B4
whisker. PC3 roughly defined a dorsoventral gradient, with most
negative weightings on neurons with RFs on the guard hairs rostral
to the C-row, and neutral weightings on neurons with larger fields
which cover both GhC and GhA (GhC-A).
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weights (see Section 2). For the components in Fig. 2A,
the average weighting coefficient in PC1 was calculated
to be 12.98 times its S.E., and for the combined PCs 1–6
was 13.44 times the S.E. Moreover, only weights which
were very close to zero were less than three times their
S.E. Thus, the weights with low statistical significance
had negligible impact on the components overall.

The S.E. of the eigenvalues, which specify the variance
associated with each component, also tended to be very
small fractions of their values. For example, the eigen-
value of PC1 in Fig. 2A was 4.2690.022 S.E., meaning
that it explained a variance equivalent to 4.26 of the
original neurons (18.5% of the total; each neuron ex-
plains a standardized variance of 1.0). Though for
typical implementations of PCA this is not a particularly
high eigenvalue, it is quite remarkable considering the
complexity of the information carried within the dis-
charge of 23 highly stochastic neurons during free
behavior. We observed that PC1’s eigenvalue increased
to 14.56 when the time integral was raised to 500 ms,
suggesting that much of the complex information and/or
noise in this ensemble was expressed over shorter time
periods.

3.8. Comparability of PCA results across animals

Similar results were obtained when PCA was used to
analyze data from VPM neuronal ensembles in the seven
other animals, two of which are shown in Fig. 3A,B.
Though the neurons recorded in each animal had differ-
ent RF mappings and discharge characteristics, and a
range of time integrals (5–25 ms) were used, they tended
to produce similar weighting patterns in their PCs. In all
animals, PC1 contained roughly homogeneous positive
neuronal weightings, and PC2 and, to a lesser extent,
PC3 roughly encoded the position of RF centers accord-
ing to particular gradients across the whisker pad. In
Fig. 3A, for example, PC1 has relatively homogeneous
weightings, but PC2 differentiates neurons with far
rostral vs far caudal RFs. In contrast, PC3 sharply
discriminates between neurons with RFs on row C vs
row E. Using the regression analysis described above for
Fig. 3A, the PC2s of five or the total eight animals were
found to significantly (P�0.01) encode rostrocaudal
position. In four of eight of these animals the PC3s also
significantly encoded dorsoventral position of neuronal
RFs. Furthermore, the PCs in Fig. 3B showed a variant
of this relationship: PC2 most selectively encoded the
dorsoventral position (R2=0.60, P=0.02), while both
PC1 (R2=0.70) and PC2 (R2=0.64) encoded rostro-
caudal position (P=0.01 for both). In none of the other
seven animals did PC1, PC4 or PC5 yield any significant
encodings of overall rostrocaudal or dorsoventral gradi-
ents. These statistics, therefore, support the general
conclusions that: (1) PC1 generally contains roughly
homogeneous positive neuronal weightings, (2) PC2

generally encodes the rostrocaudal position of RF cen-
ters across the whisker pad, (3) PC3 may encode overall
dorsoventral position, (4) higher numbered PCs tend to
encode more fine-grain spatial relationships, often defin-
ing sharp boundaries between adjacent whiskers or
whisker groups.

These overall results were obtained despite the wide
range in ensemble size and RF distribution. For exam-
ple, the ensemble used for the PCs in Fig. 3A included
21 neurons, and that for Fig. 6B had eight neurons.
Whereas the RFs in Fig. 3A covered the whole rostro-
caudal extent of the whisker field, those in Fig. 3B
covered a more limited area, mainly including the rostral
whiskers and guard hairs. As such, PC2 and PC3 in Fig.
3B defined dorsoventral and rostrocaudal gradients
across the rostral face, rather than across the whole
whisker field. Thus, despite the obvious disadvantages
associated with use of relatively small inhomogeneous
data sets (as in Fig. 3B), the present results reveal a
remarkably robust general tendency for successive PCs
to encode sensory information in the form of succes-
sively finer spatial resolutions.

This correlation of PCs with spatial frequency bands
corresponds closely to the components which we have
derived using data from computer simulated sensory
systems (unpublished observations) in which a model
receptor sheet was activated with moving stimuli. This is
remarkable considering that the PCs here were derived
from VPM neuronal ensembles which received no sen-
sory stimulation other than that produced by the animal
itself during the normal course of spontaneous behavior.

3.9. Single neurons contribute 6ariance to multiple
coding dimensions

By definition PCs, such as those shown in Figs. 2 and
3, are othogonal and therefore define mappings in
different dimensions. The fact that at least the first 3–6
PCs were found to exhibit distinct and consistent func-
tional topographies suggests that these PCs may describe
real dimensions of information processing. If so, each
neuron may be considered to contribute a portion of its
variance to several of these dimensions, as statistically
measured by the square of its PC weighting (see Section
2). These weights, therefore, offer methods for defining
each neuron’s role in multiple dimensions of processing,
and for mapping the variance weighted configuration of
the neuronal ensemble involved in each of these func-
tional tasks.

Fig. 4, for example, depicts the position of each
neuron in Fig. 2A as a point in a space defined by PC1
and PC2 (Fig. 4A) and by PC3 and PC4 (Fig. 4B).
Each neuron is labeled according to its principal
whisker, as depicted in Fig. 2A. For illustration, con-
sider the three neuron pairs whose principal whiskers
are C2, D2 and E2. In PCs 1 and 2 (Fig. 4A) they are



J.K. Chapin, M.A.L. Nicolelis / Journal of Neuroscience Methods 94 (1999) 121–140130

Fig. 4. Use of PCA to define functional relationships between neu-
rons. (A) Neurons 1–23 (from Fig. 2A) plotted as dots according to
their weightings in PC1 and PC2. (B) Neurons 1–23 plotted accord-
ing to their weightings in PC3 and PC4.

these six neurons contributes 3–14% of the total vari-
ance to each of these encodings. In PCs 3 and 4 (Fig.
4B) they play a very different role, defining a 2D space
in which objective spatial position appears to be much
less important than high-contrast differentiation be-
tween the three whiskers (C2, D2 and E2). Each of the
six neurons contributes a high percentage of its vari-
ance to this task (up to 36% for C2’s weighting of PC3).
Similarly selective differentiations of caudal whiskers
were also observed in other animals used in this study.
This selectivity may be explained by the fact that rats
tend to employ their relatively short rostral whiskers as
a group to touch objects during exploration, while their
caudal whiskers project at widely different angles into
space.

The present results suggest that the optimal mapping
of afferent information by PCA (and the brain itself)
may extract multiple different significant features of the
sensory experience, using relatively small portions of
each neuron’s variance to generalize to global objective
mappings of space or magnitude. Meanwhile, more
local and selective dimensions of information process-
ing consume larger amounts of variance from small
subsets of neurons.

3.10. PCs classify neuronal population responses to
stimulation of specific whiskers

The PCs derived here were found to be very effective
tools for classifying sensory responses. In particular,
PC2 and PC3 provided a highly efficient 2D subspace
for clustering the neuronal population responses to
discrete stimulation of different whiskers. To demon-
strate, Fig. 5 shows a ‘mapping’ of each of the nine
whiskers stimulated in this experiment into a space
defined by PCs 2 and 3. The x or y coordinates of each
point on this graph were defined by calculating eigen-
functions (see Section 2) for both PC2 and PC3 for
stimulation of each of these nine whiskers. Here, eigen-
functions 2 and 3 were each calculated as the sums,
weighted respectively by PCs 2 and 3, of the spiking
responses (in the 4- to 8-ms latency epoch) of all 23
neurons to 300–600 stimulations of the indicated
whisker. The resulting scatterplot shows existence of a
unique, anatomically appropriate position for each
whisker, especially in the rostrocaudal dimension.
Moreover, it accurately plotted the positions of
whiskers which were not within the center-RFs of any
neurons within the sample, but were within the sur-
round-RFs of some neurons (e.g. whiskers C4–6 and
B3). These results therefore show that PCs derived from
activity of a relatively small and biased sample of VPM
neurons can effectively represent the spatial positions of
a range of whisker stimulus positions. It is important to
note, however, that this map does not reproduce the
absolute X–Y positioning of the whiskers on the face.

Fig. 5. Plotting neuronal population responses to whisker stimulation
in a PCA-defined space reveals spatial arrangement of whiskers.
Neuronal population responses to deflection of each of nine different
stimulated whiskers were plotted within a space defined by PCs 2 and
3 (each dot representing the averaged responses to 300–600 deflec-
tions of the indicated whisker). The responses were measured during
the peak short latency response period, i.e. between 5 and 8 ms
post-stimulus (as shown in B and C). The arrangement of dots on this
plot is generally consistent with the spatial arrangement of the
indicated whiskers on the face.

part of two continuums, hypothesized to encode magni-
tude and rostrocaudal position, respectively. Each of
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Instead it provides a functional mapping of these
whiskers, as defined by the response patterns of this set
of neurons in the VPM occurring during spontaneous
behavior.

Roughly similar whisker mappings were found in the
eigenfunction 2–3 data from six of the other seven
animals. Though these mappings were somewhat biased
by the particular selection of neurons in each data base,
the caudo-ventral whiskers tended to occupy larger
areas of these maps than the dorsal or rostral whiskers.
This is, of course, consistent with the anatomical map-
ping of these whiskers in the somatosensory system
(Chapin and Lin, 1984). To conclude, this demonstra-
tion argues that population covariance patterns, even
that occurring during general spontaneous behavior,
contain a significant amount of information on the
mapping of whisker location within a generalized 2D
space. This space, however, is not an accurate objective
map of the whiskers, or even their receptor densities,
but is warped according to the patterns of temporal
correlation between different whisker inputs. Finally,
the proportion of population variance dedicated to this
mapping is relatively small, in this case about 12% of
the total (as calculated from eigenvalues in Fig. 2A).

3.11. Feature detection by principal components

The above results also showed that the PCs may be
used, in conjunction with data from simultaneously
recorded neuronal populations, to construct feature
detectors (i.e. eigenfunctions) whose general functional
effectiveness far surpasses data measured from any
single neuron. The following figures demonstrate that
the eigenfunctions derived from the PCs in Fig. 2A are
useful for detection of important events during ongoing
behavior, not only when applied to multi-trial averaged
data, but also to single trial (continuous) data.

The first question was whether eigenfunctions can be
used to estimate the magnitude, velocity or direction of
stimulus movement across the whiskers. Temporal pat-
terns of activity of the eigenfunctions were observed to
depict important features of stimulus movement, even
though this study used only spatially related variables.
(Neuronal activity was correlated only within the same
time bins.) For example, the peri-event histograms in
Fig. 6 show the averaged temporal responses of eigen-
functions 1–4 (from the PCs in Fig. 2A) to 17 brush-
ings of a bar in a dorsocaudal-to-ventrorostral direction
across the whiskers in an awake, immobile rat. The
probe’s successive contact with different whisker groups
(as observed in frame-by-frame video analysis) is appar-
ent in the responses of the various eigenfunctions: the
caudal C-row whiskers were touched first, which pro-
duced peak ‘A’ in eigenfunction 3. (PC3 has highly
positive weightings for neurons with RFs centered on
whisker C2.) The probe then touched the caudal D-row
whiskers, producing peak ‘B’ in eigenfunction 4. (PC4
positively weights the caudal D-row.) The probe then
touched the caudal E-row whiskers, which through
their negative weightings in PC3 and PC4, produced the
valleys after ‘A’ in eigenfunction 3, and at ‘C’ in
eigenfunction 4. The peaks following the valleys in
eigenfunction 3 and eigenfunction 4 (around ‘D’) were
mainly caused by ‘bouncing back’ of the caudal
whiskers previously bent forward by the probe. Over
the same time period (from ‘A’ to ‘C’) eigenfunction 2
exhibits a broader peak which declines slowly toward a
deep valley at ‘E’. This is explained by the fact that PC2
weights the caudal whiskers positively and the rostral
whiskers negatively. Finally, eigenfunction 1, which
positively weights all neurons, regardless of their
whisker RFs, exhibits a peak which covers, and reflects
the overall intensity of, the entire probing movement.

The above results demonstrate how the eigenfunc-
tions can be used to process time-varying sensory input
information by dividing it into ever finer spatiotempo-
ral frequency domains. When a sensory surface inter-
acts with a moving stimulus, its spatial frequencies are
revealed as temporal frequencies. Here, successive PCs
were associated with decreasing peak-to-valley dura-
tions of their sensory responses to the moving stimulus:

Fig. 6. Higher numbered PCs encode higher frequency domains of
neuronal population responses to moving whisker stimuli. Peri-stimu-
lus responses of PCs 1–4 to moving a probe across the mystacial
whiskers. Each trace is the average of the indicated PCs over 17 trials.
Initial contact of the probe on the caudal whiskers is indicated by
vertical dotted lines. Brushing consisted of slowly moving a hand held
cotton probe tip across the whiskers in alternate directions along an
oblique caudo-dorsal to rostro-ventral axis. The bar above the traces
indicates the approximate timing of the probe sweep in the rostro-
ventral direction. Vertical axes depict average equivalent discharge
rates of eigenfunctions: small ticks, 10 Hz. Horizontal axis depicts
time (s) before and after the stimulus onset. See text for explanation
of PC responses.



J.K. Chapin, M.A.L. Nicolelis / Journal of Neuroscience Methods 94 (1999) 121–140132

Fig. 7. PC2 selectively detects tactile contact on rostral whiskers. Peri-event averages of PCs 1–4 centered around the onset of 23 time periods
when the rat contacted objects with the rostral mystacial whiskers. All these behavioral events were detected using frame-by-frame analysis of
videotapes which were synchronized with data collection during the experiment. This further demonstrates PC2 codes (with negative polarity) for
tactile exploration with the rostral whiskers. X-axes: pre- and post-touch time (s). Bins, 4 ms; small ticks: 20 ms. Y-axes: average equivalent firing
rate, as in fig. 11. Small ticks: 1.0 spike/s.

�300 ms for PC1, �150 ms for PC2, �70 ms for
PC3, and �35 ms for PC4. This combination of
different spatial frequencies should optimally describe
the linearizable information carried as covarying activ-
ity in this recorded neuronal population.

3.12. Principal component eigenfunctions resol6e
spatiotemporal patterns of whisker contact during
exploratory whisking

Normally, rats obtain sensory information from their
vibrissae through active whisking behavior. One of the
critical applications of the eigenfunctions derived here
was for the detection of particular active whisker move-
ments across objects in the environment. This allowed a
comparison of the sensory information obtained during
whisker exploration, as opposed to passive stimulation
with a probe.

In all eight animals used here, PCs 1–4 were consis-
tently found to detect significant features of tactile
contact on objects during tactile whisking. To demon-
strate the typical robustness of these responses, Fig. 7
shows averages of the same eigenfunctions 1–4 cen-
tered around 23 instances of active exploratory contact
of the rostral whiskers against objects (times deter-
mined by frame-by-frame video analysis). Though ei-

genfunction 2 exhibits a consistent and highly
significant negative response during such behaviors, the
responses of eigenfunctions 3 and 4, which mainly
encode the caudal whiskers, show no significant re-
sponses. Finally, eigenfunction 1 exhibits a response
pattern which is consistent with the generally increased
whisker contact surrounding these behaviors. Similar
peri-event averages of eigenfunctions were used to ver-
ify that the behavioral correlates of the above PCs
depicted in Fig. 7, and equivalent analyses of data from
the other seven animals, were consistent throughout the
entire duration of the experiment.

Eigenfunctions, especially those constructed using
populations of 20 or more neurons, were easily capable
of detecting significant behavioral events on a single-
trial, real-time basis. For illustration, Fig. 8 shows the
same eigenfunctions 1–4 over a 20-s period of sponta-
neous behavior. Video analysis showed that this partic-
ular sequence was of interest because it consisted of a
series of active head movements which brought the
mystacial whiskers into contact with a Plexiglas wall
just to the right of the animal. This allowed an analysis
of the responses of the 23 neurons in the VPM to active
movement of the whiskers in various directions across a
smooth, flat tactile object. Particular tactile movements
observed in frame-by-frame video analyses were repre-
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Fig. 8. Population vectors define timing and direction of tactile whisker contact. (A) Rasters of spiking activity of 23 simultaneously recorded
neurons over a 1.5-s period. (B) Stripcharts of continuous eigenfunctions of PCs 1–4 over the same period during which the rat moved its whiskers
in various directions against a wall. Letters A–G represent different movements of mystacial whiskers against a wall (see text), as observed in
frame-by-frame analysis of videotape records synchronized to data collection in this experiment. (C) Activity of the same PC’s over a 20-s period.
Sequence B is contained between the vertical lines. X-Axis shows the absolute time (s) in the experiment for all recordings: Bins, 40 ms; small ticks,
200 ms. Y-Axes show equivalent ‘firing rates’ of the standardized weight-summed eigenfunctions: small ticks, 10 spikes/s. Horizontal lines through
the eigenfunctions indicate 2.0 S.D. away from the mean spontaneous activity, as calculated during quiet resting behavior (each S.D. is 13.2 S.E.).
Dotted line under A is 12 S.D.s above the mean; dotted lines under C and E are six S.D.s above the mean. Eigenfunctions were calculated as in
Section 2 using 10-ms time integrals, and then smoothed into bins by averaging within a three-bin moving window.
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sented in the eigenfunctions as peaks or valleys which
were clearly distinguished from their ‘background’ ac-
tivity. In Fig. 8B, C, the statistical significance of these
peaks and valleys can be discerned by their relation to
the confidence limits shown as horizontal dotted lines
on each trace, defining eigenfunction activity levels two
standard deviations (S.D.s) in either direction from the
means, as measured during periods of pure resting
behavior in the same experiment.

The sequence in Fig. 8B, as demarcated by vertical
dotted lines in Fig. 8C involved the following specific
movements of whiskers against the tactile surface, asso-
ciated with peaks and valleys in various eigenfunctions:
The peak at ‘A’ in PC1 represents the relatively nonse-
lective global ensemble response to a sequence of active
head and whisker movements commencing with a sud-
den head movement to the right and then down, sweep-
ing the whiskers first in a backward and then
downward direction against the wall. Statistically, this
sequence in the eigenfunction 1 is highly significant,
reaching up to 12 S.D.s from mean.

The higher numbered eigenfunctions also exhibit sig-
nificant peaks which are more selective for particular
parts of this behavioral sequence. For example, at the
onset of rightward head turning eigenfunction 4 (PC4)
exhibits a highly significant (10 S.D.s from the mean)
negative deflection (‘B’ in Fig. 8B, C). This was pro-
duced by the downward and backward movement of
the ventral whiskers against the wall, preferentially
stimulating the caudal E-row whiskers. This negative
deflection was predictable based on the pattern of
weighting coefficients for PC4, which were highly nega-
tive for the two neurons with RFs on whisker E2. This
response, however, was not simply formed by the spuri-
ous spiking of two single neurons. PC4 also negatively
weighted two neurons with RFs on D4 and three
neurons with no RFs. Examination of the raw spiking
data for the total seven neurons with negative weight-
ings for PC4 showed that five exhibited increased spik-
ing during the negative deflection shown at B.
Furthermore, the five neurons with strongly positive
weightings in PC4 (\0.1) all exhibited decreased dis-
charge during this same period. Thus, even this rela-
tively small deflection of an eigenfunction for a high
numbered component represents the highly significant
joint activity of a neuronal subpopulation. Similar
whisker movements against the wall were associated
with other negative deflections of eigenfunction 4, such
as at D and J in Fig. 8B, C.

PC2, which negatively weights rostral whiskers and
positively weights caudal whiskers, was active during
normal exploratory whisker movements in which the
whiskers moved across objects in a rostral-to-caudal
direction. An example is seen in PC2 in Fig. 8B, C in
which the rostral-to-caudal succession of whisker con-
tacts is reflected as negative-to-positive progression

shown under ‘C’. In other cases, such as in ‘K’, the
rostral whiskers alone were used to explore objects on
the floor, producing a pronounced depression in eigen-
function 2. Positive deflections of the eigenfunction 2
also carry important information consistent with its
positive weighting of the caudal whiskers: the peak at
‘H’ in Fig. 8C depicts a right turn of the head which
moved the caudal whiskers in a backward direction
against the wall. Overall, these results demonstrate that
PC2 encodes the direction of whisker sweeping across
objects in the rostrocaudal axis. Similarly, eigenfunc-
tion 3, whose PC(3) positively weights neurons with
RFs in the more dorsal whiskers (rows B and C), was
most active during movements in the dorsoventral di-
rection. As an example, ‘E’ shows the response of
eigenfunction 3 to dorsalward movements of the
whiskers against the wall. Similar, but shorter move-
ments occurred at ‘I’, ‘L’ and ‘M’.

3.13. Eigenfunctions re6eal global and local neural
ensemble information in continuous time

Eigenfunctions were also employed here to depict
neural ensemble information in stripcharts, which al-
lowed visualization of the state of multiple eigenfunc-
tions in continuous time. These depicted the
moment-to-moment status of multiple dimensions of
population information which could never be observed
in analyses at the single neuron level. For example, the
eigenfunction stripcharts in Fig. 8 reveal the presence
and time course of distinct spontaneous oscillatory
phenomena. The onset and offset timing of these
rhythms could not be detected in peri-event averages,
but instead required continuous-time depiction of the
state of the neuronal ensemble. We have observed these
8–12 Hz oscillations in the PC1s of neuronal ensembles
in the somatosensory thalamus or cortex in all of the 20
animals recorded for this study, and have routinely
utilized this ability of eigenfunction 1 to depict such
oscillatory phenomena in real time and to carry out
precise analyses of their functional characteristics
(Nicolelis et al., 1995). Video analyses (see Section 2)
showed that these oscillations characteristically began
during the period of attentive immobility which just
precedes active whisker twitching, and continue until
onset of larger active exploratory movement. They ap-
pear, therefore, to represent a global neurophysiological
process which pervades the sensorimotor thalamocorti-
cal system during behavioral preparation for movement.

Whereas eigenfunction 1 typically reveals major
global phenomena such as spontaneous global oscilla-
tions, the higher numbered components typically code
for more ‘local’ information. To illustrate further, Fig.
9 shows a raster (A) of the simultaneous activity of these
23 cells plus PCs 1 and 2 (B) over a 1.4-s period during
which the E2 whisker was subject to a single (3°;
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at ‘S’) mechanical displacement. While eigenfunction 1
again clearly reveals the global 8–12 Hz oscillations,
the higher numbered eigenfunctions follow them only
weakly. Instead, eigenfunctions 2–4 exhibit selective
responses to the E2 whisker stimulation (S) which are
clearly differentiated from the oscillatory peak (O) that
appears slightly later.

The mechanism by which the eigenfunctions can
selectively filter different dimensions of global and local
information in neuronal ensembles involves the use of
positive and negative neuronal weightings to selectively
‘subtract’ the information already encoded by lower
numbered components. Since PC1 normally has a rela-
tively homogeneous set of exclusively positive weight-
ings, it identifies ‘global’ functions, such as the 8–12 Hz
oscillations, which are characteristic of nearly all neu-
rons in the ensemble. These typically constitute the
greatest source of variance in eigenfunction 1, but are
effectively cancelled out in the higher numbered compo-
nents. Thus, the orthogonalization of network covari-
ance by PCA effectively differentiates between global
and local sources of neural information.

At time ‘S’ in Fig. 9B, local information is presented
in the form of a sensory stimulus which differentially
affects the neurons in the ensemble. The responses of
the different eigenfunctions to this stimulus can be
predicted by their weightings of neurons with RFs
centered on the stimulated whisker (E2) and its neigh-
bors (e.g. D2, D4 and C2) all of which respond at some
level to E2 stimulation. Whereas PC2 weights E2 and
these neighbors negatively, PC3 and PC4 selectively
weight E2 positively, but some of its neighbors nega-
tively. Because of the fact that whisker E2 was stimu-
lated alone, and not in conjunction with its neighbors,
eigenfunction 2 produced a cleaner resolution of the
stimulus than did eigenfunction 3 or eigenfunction 4.
Finally, the eigenfunction for PC5, which has near zero
weightings for all neurons with RFs around whisker
E2, exhibited no response to this stimulus.

The response selectivity of eigenfunctions 2–4 to
whisker E2 stimulation was verified in peri-stimulus
averages (Fig. 9C). Whereas the whisker stimulation
increased the magnitude of the average eigenfunction 1
equivalent ‘discharge rate’ from a mean 8.2 to maxi-
mum 15.7 Hz after the stimulus, for a signal/back-
ground (S/B) ratio of 1.93, the activity of PC2 increased
(with negative polarity) from a mean −0.3 to −5.9 Hz
after the stimulus, for a S/B ratio of 18.9. Even when
the high background activity of eigenfunction 1 is
disregarded by calculating the responses in terms of
deviation from the mean, its maximal response to
whisker E2 stimulation was only 15.2 S.D.s from the
pre-stimulus mean, compared with 24.0 S.D.s for PC2,
14.5 S.D.s for PC3 and 22.9 S.D.s for PC4. This greater
resolution of E2 whisker stimulation by PC2 is more
remarkable when one considers that the higher num-

bered components by rule explain much less total statis-
tical variance than PC1. Here, the eigenvalue for PC1
was 3.8, and for PC2, 1.5. Thus, PC2 devoted a much
higher proportion of its total variance to E2 whisker
responses than does PC1.

4. Discussion

4.1. PCs and multidimensionality

In this study, eigenvalue decomposition of neuronal
ensemble activity in the VPM measured during sponta-
neous behavior yielded at least 3–6 uncorrelated fac-
tors (PCs) whose resolution of significant information
in the ensemble (i.e. explained variance) was consider-
ably greater than that of any single neuron. This finding
appears to validate our hope that PCA could success-
fully provide an optimal linear representation of the
‘signals’ in these recordings, which are concentrated in
the first few components, while filtering out ‘noise’
(mainly uncorrelated neuronal activity), which is se-
questered in the remaining components. Because of the
orthogonality criterion for PCs, each represented a
separate ‘dimension’ of covariant activity in the ensem-
ble. Moreover, each of these PCs was found to possess
a clear and distinct functional attribute, suggesting that
together they provide clues toward resolution of the
fundamental axes around which the different dimen-
sions of information processing might be carried out
within the thalamocortical circuitry. These findings are
consistent with the general framework of parallel dis-
tributed processing in neuronal networks (Rumelhart et
al., 1986a): each processing task is distributed across
the network, and each single constituent neuron is
involved in processing multiple tasks. Here, the statisti-
cal contribution of each neuron’s variance to a given
processing dimension (i.e. PC) is quantitatively defined
as the square of the weighting for that PC.

4.2. Functional attributes of PCs

The functional attributes of each PC were reflected
both in its weightings of neurons with different recep-
tive fields, and also the physiological properties of the
population vectors derived from such weights. The
finding that most of the derived eigenvectors defined a
different ‘topography’: ranging from the highly general-
ized maps of the first few PCs, to the increasingly more
selective mappings encoded by each subsequent PC.
Although the sensory thalamus is commonly considered
to contain a single receptor surface density map, PCA’s
optimal mapping of the linear subspaces embedded in
actual VPM neuronal activity was unable to resolve all
such neural information into such a single two-dimen-
sional topographic representation. In fact, the greatest
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single source of variance (i.e. PC1) was non-topograph-
ical, mainly encoding the magnitude of activity across
the whole ensemble. In contrast, PC2 was typically
topographical, but generalized it maximally across the
neural population by encoding a linear rostrocaudal
gradient. Subsequent PCs became ever more selective,
often encoding sharp contrasts between adjacent
whiskers, but also showing multiple peak/valley fea-
tures within the same PC. The topographic specificity

of this organization of PCs is remarkable considering
that they could be derived using data obtained either
during sensory stimulation or spontaneous behavior
which included exploratory whisking. In fact, these
behavioral differences more often produced changes in
the eigenvalues than the PC weighting patterns, there-
fore changing their relative ordering. We conclude,
therefore, that neural population activity in the VPM
has an intrinsic and relatively invariant multidimen-

Fig. 9. PCs differentiate global from local information. In the VPM thalamus, spontaneous oscillations are ‘global’ in that most neurons are
synchronized. In contrast, single whisker stimulation is local. (A) Spike rasters show activity of 23 simultaneous neurons over a 1.4-s period of
an experiment involving intermittent E2 whisker stimulation, under awake conditions. (B) Eigenfunctions (PCs) 1 and 2 over this same time
period. Eigenfunction 1 selectively indicates spontaneous global oscillatory peaks (e.g. at ‘O’), while eigenfunction 2 selectively indicates response
(‘S’) to stimulation of whisker E2. (C) Peri-event histograms showing averaged responses of eigenfunctions (PCs) 1 and 2 to 306 repetitions of such
stimuli during the same experiment. Stimuli consisted of 3° step deflections of the E2 whisker (100-ms duration, as shown by bar above).
Responses to both the onset and offset of the stimuli are seen in both eigenfunctions. Both (B) and (C): Vertical axes depict average equivalent
discharge rates of eigenfunctions: ticks, 10 Hz. Horizontal axes depict time (s).
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sional factor structure which is maintained across dif-
ferent waking behaviors. The behaviors themselves ap-
pear to be largely encodable as modifications in the
relative variances (i.e. activity levels) allocated to the
different dimensions.

4.3. Equi6alent findings from computer simulations

Interestingly, we have obtained very similar results
by performing PCA on data obtained from a computer
model of a simple sensory system (unpublished data).
In this, a layer of neurons is fed by partially overlap-
ping inputs from a linear matrix of receptors which are
activated by moving stimuli. The PCs were observed to
define a sequence of increasing spatial frequencies
across the receptor surface, going from a single positive
bell-type curve (PC1), to a gradient/half sinusoid (PC2),
a full sinusoid (PC3), and so on. This sequence was
found to reverse when the configuration of neuronal
inputs was changed from partial-shifted overlap to cen-
ter-surround inhibition: the weighting pattern originally
exhibited by PC1 (with the highest eigenvalue) became
that exhibited by the last PC (with the lowest eigen-
value). Thus, the current findings argue that afferent
responses in the VPM approximate a partial overlap-
ping (‘distributed’) organization, rather than a center-
surround (‘local’) organization. In the distributed-type
organization, the highest eigenvalue components are
constituted by small contributions of variance from
large populations of neurons. Such components have
the greatest opportunity to extract and generalize
shared information across the ensemble.

4.4. PCA, Hebb-type learning, and thalamocortical
representations

PCA’s detection of such generalized information
emerging from the population of recorded neurons may
have major implications for understanding how sensory
input is processed, not only in the VPM, and also in its
major target, the SI cortex. In fact, the known equiva-
lence between PCA and general Hebbian learning sug-
gests that it may be an especially powerful and
functionally relevant method for characterizing the
structure of sensory representations in brain regions
which utilize Hebb-like adaptation for establishment or
reorganization of synaptic connections. It is intriguing,
therefore, to compare the weighting patterns of these
PCs with our previously published findings about the
diversity of shapes and sizes of receptive fields (RFs) in
the whisker area of the rat SI cortex (Chapin, 1986).
Using quantitative measurements, such RFs were ob-
served to vary in size from single whiskers to the whole
whisker field. Moreover, many of the RFs showed
pronounced excitatory/inhibitory gradients between ad-
jacent whiskers, or showed multiple peaks separated by

inhibitory troughs. These cortical RFs are surprisingly
similar to the topographies expressed by the different
PCs defined here in VPM neuronal ensembles. As such,
they could be produced by (polysynaptic) patterns of
thalamocortical input weightings roughly similar to
those derived here using PCA. The development and
maintenance of such weighting patterns could result
from Hebb-like (PCA-like) activity dependent adjust-
ments of synaptic strengths in the SI cortex.

4.5. Validity of PCA for understanding sensory
representations

The above observations lend some validity to the
notion that the codes derived here using PCA may have
some relation to ‘internal’ codes, as expressed either
across neural populations or even within certain single
neurons. It is reasonable to suggest that neuronal
ensemble outputs could make weighted synaptic con-
tacts on downstream neurons, and that those weights
could be modified and maintained according to their
covariance patterns, as in PCA and Hebb-type learning.
Those neurons or populations could then provide a
real-time ‘read out’ of a given PC, similar to the
eigenfunctions constructed here. A major issue, how-
ever, stems from the obvious fact that biological neu-
rons have many nonlinear properties. To a certain
extent, this is mitigated by our observation here that
multi-spike train data from larger neural populations
tend to converge on normal distributions from which
linear approximations can be extracted. However, fur-
ther progress may depend on improving our knowledge
of the nonlinear aspects of the underlying information
in these ensembles, and use of this knowledge to de-
velop appropriate nonlinear PCA and PCA-like al-
gorithms. Many such methods have been recently
developed, especially in the field of artificial neural
networks (Karhunen and Joutensalo, 1994). Unfortu-
nately, the formal mathematical bases for nonlinear
PCA is not yet sufficiently developed for it to be widely
accepted in statistical analysis. For example, the major
known advantage of nonlinear PCA appears to be its
improved ability to separate independent signals from a
noisy mixture (Karhunen and Joutensalo, 1994). Such a
capability would have limited usefulness here: our aim
is not to separate all of the individual signals impinging
on a neuronal population, but to extract the informa-
tional features produced by the association of these
signals.

4.6. Statistical resolution of PCA deri6ed functions

The statistical resolution of functionally important
information by these PCs was very high, as determined
by a number of measures. First, the S.E.s of the PC
weights and eigenvalues tended to be very small frac-



J.K. Chapin, M.A.L. Nicolelis / Journal of Neuroscience Methods 94 (1999) 121–140138

tions of the total values. Second, the responses of the
derived eigenfunctions to functionally significant events
tended to be many S.D.s away from baseline activity.
From the current results it is clear that the statistical
resolution and ‘biasing’ of the information derived us-
ing PCA is dependent on: (1) the total number of
sampled neurons, (2) the time period over which they
are recorded, (3) the size and complexity of the area
sampled, and the homogeneity of sampling within that
area, and (4) the sampling time integral, which col-
lapses the temporal complexity of the spike train sig-
nals. Theoretically, if more neurons were recorded over
longer time periods using shorter time integrals, more
significant local informational factors could be pulled
out of the noise.

One obvious distinction between the PCA approach
used here and traditional PCA is that a relatively large
number of components is needed to summarize most of
the total variance. Here, only about 50% of the total
variance was explained by the first 25% of the compo-
nents. This fact, however, does not compromise PCA’s
usefulness as a technique for reducing the dimensional-
ity of complex information sets. Instead, it demon-
strates the predictable result that neural activity in the
VPM is relatively complex and high dimensional during
waking behaviors. One could easily reduce this com-
plexity by integrating over longer time bins or by
averaging the data over multiple repetitions of the exact
same stimulus event, but this is not desirable when the
ultimate aim is to resolve the general functional reper-
toire of this nucleus, with a fine spatial and temporal
resolution. Moreover, since a relatively large propor-
tion of the total variance of single neuron spiking is
apparently ‘noise’ (i.e. is not shared with other recorded
neurons) most of the total ensemble variance must
inevitably be used to explain this noise. This fact under-
scores the importance of using PCA to concentrate
‘signal’ information in the lower numbered compo-
nents, while consigning the noise to the higher num-
bered components.

4.7. Eigenfunctions

The above results demonstrate that a range of func-
tionally significant neural information can be resolved
through eigenfunctions constructed by using PCA to
provide weightings for averaging the activity of simulta-
neously recorded neurons. In general, these provided a
much greater resolution of neural events than could be
obtained with data from any single neuron, and even
greater resolution was obtained by combining multiple
eigenfunctions. A major advantage of this increased
resolution is that a number of significant sensory-be-
havioral events could be reliably detected on a single
trial basis using stripcharts of one or several eigenfunc-
tions. This alleviates the necessity of averaging neu-
ronal activity over multiple trials.

An additional advantage is the ability of the PCA
derived eigenfunctions to ‘focus’ on particular informa-
tional features embedded in neuronal ensembles. This
represents a major improvement over the use of simple
unweighted ensemble averages (Dormont et al., 1982),
which are only effective for encoding one dimension of
information. Thus, combining the information from
eigenfunctions 2 and 3 improved the ability to classify
neural responses to stimulation of different whiskers, in
fact mapping the whiskers roughly according to their
topographic location on the face. The selectivity pro-
vided by this multidimensional coding would not have
been possible with the simple ensemble average.

This ability of eigenfunctions to resolve significant
sensory information in real time was especially useful
for analysis of neural ensemble activity during sponta-
neous behavior. In most cases, each of the first few
eigenfunctions were robustly correlated with observable
features of sensory-behavioral function, and these were
predictable based on their PC weighting patterns. Thus,
eigenfunction 1 tended to depict global, ensemble-wide
functions, such as the overall magnitudes of sensory
stimuli, regardless of their position or direction. In
contrast, PCs 2 and 3 were more selective for whisker
position, and more importantly, for specific directions
of stimulus movement across the whisker field. Indeed,
during whisking behavior these eigenfunctions tended
to reveal the direction and speed of whisker movement
across surfaces more than the identities of the specific
whiskers which were touched. Finally, the higher num-
bered components tended to encode information in
higher spatial frequency domains, but more importantly
defined specific relationships between neurons repre-
senting particular nearby whiskers. To conclude, the
eigenfunctions derived using PCA defined a functional
topography between neurons. The degree to which this
matched the anatomical topography between whiskers
on the face was a function of the neural transformation
of spatiotemporal patterns of whisker receptor activa-
tion during spontaneous whisking.

To a large extent, the lower numbered eigenfunctions
express emergent, network-wide information, rather
than information sequestered within small groups of
neurons. Thus, these eigenfunctions allow measurement
of information which exists mainly through small con-
tributions of variance from each of a large number of
neurons across the network. The resolution of such
information is largely dependent on the number of
neurons included in the population average. It can be
predicted, therefore, that development of techniques for
recording larger numbers of neurons in functional
ensembles will allow increasingly fine resolution of the
informational parameters involved in somatosensory
processing.

The fact that the eigenfunctions here, which were
constructed using relatively small neural ensembles (8–
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24 neurons) were able to detect, on a trial-to-trial basis,
a number of significant behavioral events suggests that
it might soon be possible to move beyond the classical
neurophysiological requirement for averaging multiple
repetitions of a stimulus. This capability is important not
just for reasons of efficiency, but also because it is
virtually impossible to create perfectly reproducible con-
ditions for serial testing of neuronal properties. Not only
are the behavioral conditions impossible to reproduce,
but internal brain states which cause distinctive patterns
of temporal coherence between neurons are even less
controllable. Thus, network-based approaches such as
that explored here could help alleviate the classical
dependence of behavioral neurophysiology on over-
trained animals. This would allow investigators to more
precisely define the optimal behavioral tuning of neural
activity by allowing it to be correlated with a much wider
range of spontaneous and trained behaviors. In other
words, if the experiment focuses on a narrow set of
parameters chosen by the investigator, it cannot claim to
have found the optimal property of the neurona.

The ability to use PCA and/or other methods to
encode multi-neuron population vectors marks an im-
portant development in that it is now possible to resolve
behaviorally significant brain information on a single
trial basis. The next step is to extract such brain
information in realtime and manifest it electronically in
the real world. As an example, we have recently shown
that PCA can be used to encode a realtime readout of
32-neuron population activity recorded in the motor
cortical forelimb area of rats trained in a lever position-
ing task (Chapin et al., 1999). These rats were able to
utilize such electronically manifested cortical ‘motor’
signals to directly control movement of a robot arm.
Because of the accuracy imparted by using large neu-
ronal populations, the animals were able to move the
robot arm to fetch water from a dropper, and return it
to their mouths using brain activity alone.

4.8. PCA 6s other strategies for depicting neuronal
population information

PCA is but one of a number of techniques which could
be used to characterize neuronal population informa-
tion. Since PCA is primarily descriptive, it does not
depend on any preconceived theory about coding in the
ensemble. It is significant, therefore, that the eigenfunc-
tions derived here tended to be clearly and consistently
correlated with externally observable sensory or motor
phenomena. Nevertheless, there is no rule that each
eigenfunction must necessarily code for a single specific
identifiable behavioral event. For example, eigenfunc-
tion 1 was found here to express overall magnitude of
sensory stimulation, plus global 8–12 Hz oscillations
during attentive immobility behaviors which were
preparatory to onset of rhythmic whisker movement

(Nicolelis et al., 1995). Thus, the covariance mappings
provided by PCA constitute opportunities to observe the
information provided by functional groupings not antic-
ipated by the experimenter. In fact, any close matching
between eigenfunctions and target behaviors must be
regarded as fortuitous. Correlated discharge between
neurons can be caused by many internal and external
factors, and need not necessarily match an experi-
menter’s pre-existing hypothesis about coding in the
system. For this reason it may be useful to combine PCA
with techniques optimally designed for classifying
groups, such as discriminant analysis, classification and
regression trees (CART; Breiman et al., 1984), or neural
networks with weights defined through supervised learn-
ing techniques (Rumelhart et al., 1986b). This ‘hypothe-
sis free’ aspect of the PCA is also different from
population coding based on tuning functions (Georgo-
poulos et al., 1986, 1988, 1989).
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