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MAPK activation in nociceptive neurons and pain hypersensitivity
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Abstract

Extracellular signal-regulated protein kinase (ERK) is a mitogen-activated protein kinase (MAPK) that mediates

intracellular signal transduction in response to a variety of stimuli. ERK is involved in cell proliferation and

differentiation and in neuronal plasticity, including long-term potentiation, learning, and memory. Here, we present

recently accumulating data about the roles of MAPK pathways in mediating the neuronal plasticity that contributes

to pain hypersensitivity. The phosphorylation of ERK in the dorsal root ganglion (DRG) and dorsal horn neurons

occurs in response to noxious stimulation of the peripheral tissue or electrical stimulation to the peripheral nerve,

i.e., activity-dependent activation of ERK in nociceptive neurons. In addition, the activation of ERK occurs in

these nociceptive neurons after peripheral inflammation and axotomy and contributes to persistent inflammatory

and neuropathic pain, via transcriptional regulation of key gene products. On the other hand, peripheral

inflammation and axotomy also induces p38 MAPK activation in DRG neurons. Taken together, these findings

indicate that activation of MAPK in nociceptive neurons may participate in generating pain hypersensitivity

through transcription-dependent and -independent means. Thus, inhibition of MAPK signaling in the primary

afferents, as well as in the spinal cord, may provide a fruitful strategy for the development of novel analgesics.
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Introduction

The mitogen-activated protein kinase (MAPK) is a family of serine/threonine protein kinases that

transduce extracellular stimuli into intracellular posttranslational and transcriptional responses (Seger

and Krebs, 1995; Lewis et al., 1998; Widmann et al., 1999). The MAPK family includes extracellular
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signal-regulated protein kinase (ERK), p38 MAPK, c-Jun N-terminal kinase/stress-activated protein

kinase (JNK/SAPK), and ERK5. The ERK is activated by membrane depolarization and calcium influx

(Rosen et al., 1994), activated by an upstream kinase, MAPK/ERK kinase (MEK), and known to be one

of the intracellular signaling pathways involved in neuronal plasticity, such as long-term potentiation,

learning, and memory (Fields et al., 1997; Martin et al., 1997; Fields, 1998; Impey et al., 1999; Sweatt,

2001). Physiological and pathological activity-dependent activation of ERK occurs in the CNS,

especially in the hippocampus (Baraban et al., 1993; English and Sweatt, 1996; Atkins et al., 1998;

Obrietan et al., 1998; Dudek and Fields, 2001). Recently, several studies have reported ERK

phosphorylation in the nociceptive pathway; for example, acute noxious stimuli, such as formalin or

capsaicin, induce ERK phosphorylation in spinal dorsal horn neurons (Ji et al., 1999; Huang et al., 2000;

Karim et al., 2001; Pezet et al., 2002a,b). A MEK inhibitor PD 98059 reduces acute pain behavior after

subcutaneous formalin injection, suggesting a role for ERK in acute nociceptive processing by a

nontranscriptional mechanism, given the short time involved (30–60 min) (Ji et al., 1999; Karim et al.,

2001). Neuronal plasticity occurs in primary afferent neurons, as well as spinal dorsal horn neurons

(Woolf and Costigan, 1999; Woolf and Salter, 2000; Julius and Basbaum, 2001; Scholz and Woolf,

2002). This review will mainly focus on the dorsal root ganglion (DRG) neurons and will review the

contribution of the MAPK pathways in nociceptive neurons to pain hypersensitivity.
ERK activation in DRG neurons after noxious stimulation

Much attention has focused on the signal transduction mechanisms of primary afferent neurons

responsible for the modulation of pain transmission. Inflammatory mediators, such as prostaglandin E2,

serotonin, epinephrine, and nerve growth factor (NGF), produce hyperalgesia through activation of

protein kinase A (PKA) or protein kinase C (PKC) in primary afferent neurons (Gold et al., 1998; Khasar

et al., 1999). Recently, it has been shown that the ERK cascade acts in epinephrine-induced hyper-

algesia; also, the Ras-MEK-ERK pathway is activated independently of PKA or PKC (Aley et al., 2001;

Dina et al., 2003). Furthermore, NGF injected into the peripheral tissue increases p-ERK labeling in

tyrosine kinase A (trkA)-containing DRG neurons (Averill et al., 2001; Delcroix et al., 2003). However,

there have been few studies of signal transduction involved in the activity-dependent plasticity of

primary afferent neurons (Fields et al., 1997; Fitzgerald, 2000). We have demonstrated recently that

phosphorylation of ERK in primary afferent neurons occurs in response to noxious stimulation of the

peripheral tissue or electrical stimulation to the peripheral nerve, i.e., activity-dependent activation of

ERK in DRG neurons (Dai et al., 2002). In addition, a MEK inhibitor U0126 dose-dependently

attenuates thermal hyperalgesia after capsaicin injection. These results suggest that the activation of ERK

pathways in DRG neurons is involved in peripheral sensitization in acute pain conditions. The

phosphorylation of ERK in DRG neurons after noxious stimulation might be useful for examining

the activation state of each neuron that contains various pain-related molecules (Dai et al., 2002).
ERK activation and gene expression in spinal neurons

Recently, several studies have reported that ERK may have a role in persistent hyperalgesia

(hypersensitivity to thermal and mechanical stimuli), a feature of chronic pain states (Sammons et
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al., 2000; Ji et al., 2002a; Galan et al., 2002). Persistent inflammatory hyperalgesia can be induced

by paw inflammation with carrageenan or complete Freund’s adjuvant (CFA). Spinal ERK is

phosphorylated by these stimuli (Ji et al., 2002a; Galan et al., 2002), and inflammatory hyperalgesia

can be prevented by ERK inhibitors (Sammons et al., 2000; Ji et al., 2002a). Furthermore, spinal

ERK is also activated in experimental neuropathic and visceral pain models (Ciruela et al., 2003;

Galan et al., 2003). The ERK produces not only short-term functional changes by nontranscriptional

processing, but also long-term adaptive changes by increasing gene transcription. For example,

activated ERK translocates from the cytoplasm to the nucleus and activates Rsk2, which then

phosphorylates the transcription factor cAMP response element-binding protein (CREB) on Serine

133 (Xing et al., 1996). The phosphorylated CREB then binds to the cAMP response element sites

on the promoter regions of the DNA and initiates the transcription of genes (English and Sweatt,

1997; Atkins et al., 1998; Impey et al., 1998, 1999; Obrietan et al., 1999). In fact, peripheral

inflammation and nerve injury induce CREB phosphorylation in dorsal horn neurons (Ji and Rupp,

1997; Messersmith et al., 1998; Ma and Quirion, 2001; Miletic et al., 2002; Hoeger-Bement and

Sluka, 2003). However, apart from immediate early genes such as c-fos, the specific target genes

regulated by ERK are primarily unknown (Xing et al., 1996; Sgambato et al., 1998). Ji and

colleagues recently demonstrated that the activation of the ERK in dorsal horn neurons contributes

to persistent inflammatory pain, via transcriptional regulation of prodynorphin and neurokinin-1 (Ji et

al., 2002a).
ERK activation and gene expression in DRG neurons

The ERK pathway involvement in neurotrophin-dependent survival and differentiation of developing

peripheral neurons has been characterized in detail (Klesse and Parada, 1999; Miller and Kaplan, 2001;

Patapoutian and Reichardt, 2001). For example, the high-affinity receptor for NGF, trkA, can signal

through at least six different pathways, a major one of which is a MAPK pathway (i.e., the ERK

pathway; Finkbeiner, 2000; Chang and Karin, 2001). In this pathway, activated receptors induce GTP

loading and activation of the small G-protein Ras. In turn, Ras-GTP recruits a three-tiered enzyme

cascade in which a MAPK kinase kinase (Raf) phosphorylates MEK, which phosphorylates and

activates ERK (English et al., 1999). However, very little is known about the ERK pathway, responsible

for the maintenance of the nociceptive phenotype of adult sensory neurons and the changes after

peripheral inflammation and nerve injury. Furthermore, it is not clear what role these changes play in

generating pain hypersensitivity (Woolf and Costigan, 1999; Ji and Woolf, 2001). Inflammation and

nerve injury lead to altered gene transcription and protein synthesis in DRG neurons (Hokfelt et al.,

1994; Noguchi et al., 1995; Fukuoka et al., 1998; Alvares and Fitzgerald, 1999; Woolf and Salter, 2000;

Fukuoka and Noguchi, 2002). For example, brain-derived neurotrophic factor (BDNF) synthesis is

known to increase in trkA-expressing small and medium-sized DRG neurons after inflammation (Apfel

et al., 1996; Michael et al., 1997; Kerr et al., 1999; Mannion et al., 1999; Thompson et al., 1999; Obata

et al., 2002), whereas after nerve injury, the increase in BDNF occurs in the axotomized medium-to-large

diameter DRG neurons (Cho et al., 1998; Tonra et al., 1998; Li et al., 1999; Michael et al., 1999; Zhou et

al., 1999b; Obata et al., 2003a).

Recently, we have shown that the activation of ERK regulates gene expression of BDNF in

primary afferent neurons after peripheral inflammation and sciatic nerve transection (Obata et al.,
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2003b). Peripheral inflammation induces an increase in the phosphorylation of ERK, mainly in trkA-

containing small-to-medium diameter DRG neurons 1 d after the CFA injection (Fig. 1A, B). The

treatment of the MEK inhibitor U0126 reverses the pain hypersensitivity and the increase in

phosphorylated-ERK (p-ERK) and BDNF in DRG neurons induced by CFA. In contrast, axotomy

induces the activation of ERK mainly in medium- and large-sized DRG neurons and in satellite glial

cells at 3, 7, and 14 d after the nerve lesion (Fig. 1C, D). U0126 suppresses the axotomy-induced

autotomy behavior and reverses the increase in p-ERK and BDNF. To elucidate whether alterations

of endogenous NGF can trigger changes in both the phosphorylation of ERK and BDNF expression

similar to those seen after peripheral inflammation and axotomy, intrathecal injections of rat

recombinant h-NGF or anti-NGF were performed. In this test, the intrathecal application of NGF

induced an increase in the number of p-ERK- and BDNF-labeled cells, mainly small neurons, and

the application of anti-NGF induces an increase in p-ERK and BDNF in some medium-to-large

diameter DRG neurons. These findings suggest that the activation of ERK in the primary afferents

occurs in different populations of DRG neurons after peripheral inflammation and axotomy,

respectively, through alterations in the target-derived NGF and contributes to persistent inflammatory
Fig. 1. A, B, Photomicrographs showing the p-ERK-IR in the ipsilateral (A) and contralateral (B) L4/5 DRG 1 d after peripheral

inflammation. There was an increase in the number of p-ERK-IR neurons in the ipsilateral DRG (arrows). In contrast to DRG

neurons, satellite cells show high basal levels of p-ERK-IR (open arrows). C, D, Photomicrographs showing the p-ERK-IR in the

ipsilateral (C) and contralateral (D) L4/5 DRG 7 d after sciatic nerve transection. Axotomy increased p-ERK expression in neurons

and/or satellite cells in the ipsilateral DRG. The p-ERK-IR was present in both neurons and surrounding satellite cells (arrows) or

only in satellite cells (open arrows); the inset shows that both the neuron and surrounding satellite cell expressed p-ERK-IR. Scale

bar: (in D) A–D, 100 Am.



Fig. 2. Schematic representation of the expression of ERK and p38 after peripheral inflammation and axotomy. A, After

peripheral inflammation, ERK, as well as p38, is activated in small sized neurons, secondary to the increase of target-derived

NGF. B, After nerve injury, ERK is activated in large-sized neurons, whereas p38 is activated in small sized neurons, secondary

to the loss of target-derived NGF. Furthermore, the increase in both p-ERK- and p-p38-IR was seen in satellite glial cells,

surrounding large-sized neurons.
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and neuropathic pain, via transcriptional regulation of BDNF expression (Fig. 2) (Obata et al.,

2003b).
p38 activation and gene expression in DRG neurons

A recent report demonstrated that transient receptor potential ion channel TRPV1, formerly known as

vanilloid receptor-1, is regulated by NGF-induced activation of the ERK/MAPK pathway in DRG

neurons in vitro (Bron et al., 2003). On the other hand, Ji and colleagues showed that p38 MAPK

activation in the DRG is required for NGF-induced increases in TRPV1 expression and contributes to

the maintenance of inflammatory pain hypersensitivity (Ji et al., 2002b). p38, a MAPK which operates

through a separate intracellular cascade, functions as a mediator of cellular stresses such as inflammation

and apoptosis (Widmann et al., 1999; Shi and Gaestel, 2002). Although an activity-dependent p38

activation occurs in neurons (Mao et al., 1999), and p38 exerts effects in the hippocampus that oppose

that of ERK (Bolshakov et al., 2000), the contribution of p38 MAPK to nociception and pain

hypersensitivity is still under investigation. Recent reports have demonstrated that not only peripheral

inflammation but also axotomy induces p38 activation in small DRG neurons (Fig. 2) (Ji et al., 2002b;

Kim et al., 2002; Jin et al., 2003; Schafers et al., 2003). A p38 inhibitor SB203580 reduces

inflammation-induced thermal hyperalgesia and L5 spinal nerve ligation-induced mechanical allodynia

(Ji et al., 2002b; Jin et al., 2003; Schafers et al., 2003). Considering that ERK activation occurs in

different populations of DRG neurons after peripheral inflammation and axotomy, ERK and p38 are

likely to have distinct roles in pain states evoked by several different mediators and pathological

conditions (Fig. 2).
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In addition to ERK and p38, other MAPK pathways, such as the JNK/SAPK or ERK5 pathway, also

may be activated by inflammation and/or nerve injury (Kenney and Kocsis, 1998; Ma et al., 2001;

Watson et al., 2001). Peripheral axotomy has been shown to induce long-term JNK/SAPK activation in

DRG neurons. Long-lasting JNK/SAPK activation and c-Jun expression may participate in gene

regulation (Kenney and Kocsis, 1998; Fernyhough et al., 1999; Hou et al., 2003). Furthermore,

phosphorylation of JNK/SAPK, as well as ERK and p38, plays a role in the morphine-induced increase

in calcitonin gene-related peptide and substance P in primary sensory afferents, contributing to the

development of tolerance to opioid-induced analgesia (Ma et al., 2001). Watson and colleagues reported

that not only ERK but also ERK5 mediates nuclear responses following direct cell body stimulation by

NGF, whereas during retrograde signaling, endocytosed trks activate the ERK5 (Watson et al., 2001).

These findings suggest that JNK/SAPK and ERK5, as well as ERK and p38, play an important role in

the generation of pain hypersensitivity.
MAPK activation in non-neuronal cells

The activation of spinal cord glial cells, including microglia and astrocytes, has been implicated in the

pathogenesis of pain (Meller et al., 1994; Watkins et al., 1997, 2001a,b; DeLeo and Yezierski, 2001;

Tsuda et al., 2003). Proinflammatory cytokines released from glial cells produce pain hypersensitivity,

and microglia and astrocytes are activated in the spinal cord after peripheral inflammation and nerve

injury and in cancer models (Fu et al., 1999; Sweitzer et al., 1999; Winkelstein et al., 2001; Mantyh et

al., 2002). p-p38 is present constitutively in non-neuronal cells in the spinal cord, and peripheral

inflammation induces only a modest increase in p-p38 levels (Ji et al., 2002b). In contrast, peripheral

axotomy induces p38 activation in spinal microglia (Nomura et al., 2001; Kim et al., 2002; Jin et al.,

2003). p38 inhibitors diminish inflammation-induced hyperalgesia and pain hypersensitivity in the

sciatic inflammatory neuropathy model by blockade of spinal p38 activation (Watkins et al., 1997;

Milligan et al., 2000, 2003; Svensson et al., 2003a,b). On the other hand, ERK and JNK/SAPK, but not

p38, are phosphorylated in astrocytes in the spinal cord after partial nerve injury (Ma and Quirion, 2002),

whereas dorsal rhizotomy induces ERK activation in spinal microglia and oligodendrocytes (Cheng et

al., 2003).

In the DRG, p-ERK expression was upregulated in satellite glial cells that surrounded, in particular,

the larger diameter neuronal somata after sciatic nerve transection (Fig. 2) (Obata et al., 2003b). In

addition, peripheral axotomy induces p38 activation in satellite cells surrounding neurons in the DRG

(Fig. 2) (Jin et al., 2003). These findings emphasize the importance of glial cells and glial-neuronal

interactions in the DRG, as well as in the spinal cord, after peripheral axotomy (McLachlan and Hu,

1998; Ramer et al., 1999; Zhou et al., 1999a; Hu and McLachlan, 2002).
Conclusion

Activation of MAPK clearly has a substantial role in the establishment and maintenance of

nociceptive-induced plasticity in DRG and dorsal horn neurons not only by posttranslational modifi-

cations of target proteins, but also by increasing gene transcription. These attractive targets of study will

give us new approaches for understanding the cellular/molecular mechanisms underlying pain hyper-
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sensitivity. In addition, MAPK pathways have several components, affording an opportunity for

antagonism at many levels. Therefore, MAPK pathways in the primary afferents, as well as in the

spinal cord, may be potential targets for pharmacological intervention.
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