
Understanding the cell biology of antigen presentation:
the dendritic cell contribution
Evelina Gatti� and Philippe Pierrey

The study of the cell biology of antigen processing and

presentation has greatly contributed to our understanding of the

immune response. The work of many immunologically inclined

cell biologists has also permitted us to gain new insights on

cellular mechanisms shared by many cell types. Dendritic cells

are master regulators of the immune system and consequently

have received a lot of attention in recent years. With the aim of

controlling antigen processing and presentation, the solutions

used by dendritic cells to respond to environmental changes are

numerous and surprising. In the presence of pathogens,

dendritic cells regulate strongly their endocytic pathway by

interfering with uptake, proteolysis, membrane dynamics and

transport in and out of the lysosome to become the most potent

antigen-presenting cells known.
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Abbreviations
APC antigen-presenting cell

CIIV class II vesicle

DC dendritic cell

iDC immature DC

Ii invariant chain

LPS lipopolysaccharide

MIIC MHC II compartment

mDC mature DC

MHC major histocompatibility complex

MLB multilamellar body

MVB multivesicular body

TAP transporter-associated with antigen presentation

Introduction
Dendritic cells (DCs) play a unique role in the initiation

of the immune response, owing to their exceptionally

strong capacity for presenting antigens to naive T lym-

phocytes [1]. DCs migrate to peripheral organs and

monitor their environment for the presence of microor-

ganisms. Detection by organ-resident DCs of pathogen-

associated molecules such as lipopolysaccharides (LPSs)

induces maturation and migration towards the lymph

node [2]. Immature DCs (iDCs) are thought to act as

sentinels that detect and accumulate foreign antigens,

whereas mature DCs (mDCs) present captured antigens

to T cells in the lymphoid tissues. In addition, recent

observations suggest that DCs might also induce periph-

eral tolerance by presenting self-antigens to and anergis-

ing auto-reactive T cells [3]. DCs are therefore master

regulators of the immune system and their maturation

reflects an ordered series of signal-dependent events that

result in specific alteration of gene expression, intracel-

lular protein targeting and organelle biogenesis, leading

to potent immunomodulatory functions.

To trigger an immune response, protein antigens have to

be converted to short peptides, loaded onto major histo-

compatibility complex (MHC) dimers and presented at

the surface of antigen-presenting cells (APCs). Peptide–

MHC complexes serve as ligands for antigen-specific

receptors on T lymphocytes, which are activated with

the help of co-stimulatory molecules (such as CD86 or

CD40). MHC class I molecules interact mostly with

cytosolic self or viral peptides; MHC class II are most

often associated with foreign peptides generated in the

endocytic pathway. DCs have developed regulation

mechanisms that are particularly efficient at influencing

the transport and loading of MHC molecules during

maturation [4].

We describe here recent and particularly exciting findings

on the regulation of antigen presentation during DC

activation and their contribution to deciphering lysosomal

function.

Keeping control of lysosomes
MHC class II expression is restricted to professional

APCs, including B lymphocytes, DCs and macrophages,

which are specialised in the stimulation of T cells and the

regulation of the immune system. MHC class II mole-

cules, to stimulate CD4þ T cells, must transit through

endocytic organelles, before exogenous peptide loading

and cell surface arrival [5]. Antigen processing is totally

dependent on endosomal proteolysis to generate the

peptides loaded onto MHC molecules [6]. Interestingly,

MHC class II molecules are even further dependent on

proteolysis, owing to their association with invariant chain

(Ii) [7,8]. Ii is required for MHC II endosomal targeting

and strerically prevents the binding of exogenous pep-

tides to MHC dimers [8]. Endosomal MHC-class-II–Ii

complexes must therefore be rendered competent for
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antigenic peptide loading by degrading Ii, which is

cleaved sequentially and accumulates in discrete inter-

mediates still associated with MHC II, known as p22

(LIP [leupeptin-induced protein], 22 kDa), p10 (SLIP

[small LIP], 10 kDa) and, lastly, CLIP (class II-asso-

ciated Ii peptide) [7]. CLIP–MHC-II complexes are the

targets of H2-DM and H2-DO, which are both hetero-

dimeric molecules homologous to MHC II and which

catalyse the removal of the Ii peptide from the class II

groove and favour its replacement with a different anti-

genic peptide [9].

Increasing evidence suggest that DCs can modulate their

proteolytic activity to control antigen presentation.

Developmental control of proteolysis was first shown in

mouse DCs, in which Ii degradation is modulated after

LPS or cytokine stimulation [10,11�,12]. Interestingly,

cathepsin S, an APC-specific endoprotease responsible

for p10 degradation, is inhibited in iDCs [10]. Cystatin C,

a natural inhibitor of cysteine proteases, was proposed to

play an active role in this process by being targeted to the

lysosomes of iDCs but not to those of mDCs [10]. A

relatively slow rate of Ii degradation in iDCs is likely to

favour the coordinated transport and retention of MHC II

molecules in the lysosomes of these cells. This observa-

tion has now been extended to show that a general

activation of endosomal proteolysis occurs during DC

maturation [13��]. Maturation induces vacuolar proton

pump activation, thus leading to enhanced lysosomal

acidification and facilitating efficient formation of pep-

tide–MHC complexes. This finding explains the relative

stability of internalised antigens and the inefficiency of

MHC II–peptide loading in iDCs [14]. The inducible

recruitment by endosomal membranes of the V1 sector of

the proton pump decreases the lysosomal pH by 1 unit (to

pH 4.5) and favours the active conversion of lysosomal

proteases and enzymes involved in antigen presentation,

such as the g-interferon-inducible lysosomal thiol reduc-

tase (GILT) [15].

Although very appealing, this model has still several

caveats. For instance, the fact that MHC class II half-

life is relatively short in iDCs [16–18] should be recon-

ciled with the mediocre proteolytic activity of these cells.

In addition, cathepsin S, well known to be also active at

neutral pH [19], should not be sensitive to acidification.

Natural protease inhibitors (such as cystatins) and poten-

tial intraendosomal segregation could therefore also con-

tribute to the regulation of proteolysis [12] as well as

other mechanisms.

Invariant chain, although a proteolytic target, is para-

doxically directly involved in the control of lysosomal

degradation. Ii exists as two alternatively spliced forms,

p31 and p41, distinguished by an insert of a 64-amino-

acid domain in the lumenal portion of p41 [8]. Both

in vitro and in vivo, p41 has been shown to inhibit the

major lysosomal cysteine protease cathepsin L and to

provide better lysosomal targeting and stability to this

enzyme [20,21�,22,23]. Surprisingly and independently

of p41 function, the absence of Ii favours H2-DM degra-

dation in mDCs, revealing a complex interplay, between

the presentation machinery and the lysosomal environ-

ment [24]. The complexity of this regulation is further

demonstrated by the observation that cathepsin L activ-

ity is completely inhibited in mouse DCs, even when

overexpressed by transgenesis [25�]. The lysosomal

environment of DCs is therefore regulated by multiple

factors having a broad or restricted specificity and could

serve as a model to understand how cells control lysoso-

mal activity during their development.

A way out of the lysosomes
One of the most impressive features of DC maturation is

the redistribution of MHC II molecules from intracel-

lular lysosomal compartments to the surface of mature

cells [17] (Figure 1). The developmental activation of

MHC class II transport is specific to DCs and has been

compared with a gearbox, through which immature

‘idling’ DCs ‘gear up’ their antigen-presenting activity.

The observation that lysosomes in DCs can export their

contents to the cell surface in a regulated fashion has

reconciled divergent observations describing the iden-

tity of the organelles involved in MHC II loading and

export. The detection over time of several MHC-II-

containing compartments in maturing primary DCs has

confirmed what had been observed in different trans-

formed B cell lines and debated over the years [26]. MHC

II molecules on their way to the surface can traffic

through endocytic compartments both containing lyso-

somal markers (MIIC [MHC II compartment]) or not

(CIIV [class II vesicles]) [17]. In addition, the under-

standing that multivesicular body (MVB) and multila-

mellar body (MLB) MHC-II-containing compartments

represent conventional late endosomes and lysosomes,

and not specialised compartments, has been an important

step in this process [27]. Lysosomes have long been

considered as a ‘cul-de-sac’ for endocytic transport,

where internalised material is degraded by multiple

hydrolysing enzymes. The finding that DC lysosomes

can initiate a previously unknown exit pathway, by which

selected molecules can be rescued from degradation,

introduces a totally new concept (Figure 2). Electron

microscopy and video imaging has revealed that lyso-

somes undergo a full redistribution of their internal

membrane contents, leading to lysosomal proteins sort-

ing, tubule formation and transport towards the cell

surface [28��,29�,30��,31��]. In iDCs, MHC II is targeted

to the internal vesicles of MVBs and segregated from the

peptide-editor H2-DM, which localises in the peripheral

membrane of the organelles [28��]. Upon activation,

intermixing of the membranes allows contact of MHC

II with other lysosomal molecules, while tubule forma-

tion promotes its sorting. This exit pathway is inducible,
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although it is clearly different from the previously

described exocytosis of secretory lysosomes observed

in cytotoxic T cells [32] or the release of MHC-contain-

ing exosomes by B cells [33].

Exosomes are likely to be the result of a direct fusion of

endosomal MVBs with the plasma membrane, causing

the release of their internal membranes in the extracel-

lular media [34]. DCs, like B cells, secrete exosomes;

however, perhaps because of tubule formation, secretion

is reduced during DC maturation and contributes only

partially (10%) to the total MHC II delivery to the surface

[34]. The tubulo-vesicularisation of MVBs and MLBs

upon DC activation demonstrate that lysosomes are not

dead ends for membrane proteins; it also explains the

previous characterisation in these cells of CIIVs [17],

which are likely to represent a purified tubule population.

However, the mechanism by which sorting of MHC II

from other lysosomal-resident molecules (such as H2-DM

or LAMP-2 [lysosome-associated membrane protein 2]) is

achieved, and the fate of soluble internalised material,

still have to be investigated [30��]. DC-specific molecules

such as DC–LAMP [35,29�], which is induced and tar-

geted both to lysosomes and tubules during maturation,

could play a key role in this event.

Invariant chain could also participate in the intravesicular

sorting of MHC II. The potential role of ubiquitination,

now known to contribute actively to the formation of

MVBs [36], should also be evaluated in iDCs. Lysosomes

have been shown to form tubular extension in macro-

phages and B cells but only to facilitate phagosome–

lysosome fusion and not surface delivery [37].

Whether the tubule-mediated pathway to the surface is

unique to DCs remains to be examined. Clearly some

differences observed among species and the involvement

of known or DC-specific members of the coat, Rabs and

SNARE (soluble N-ethylmaleimide sensitive factor

attachment protein receptor)-protein families, will have

to be clarified.

The formation of the immunological synapse contain-

ing various proteins and lipids required for efficient

T cell activation is necessary to maximise antigen

presentation and its immune consequences [38]. The

possibility that the endosomal exit pathway contributes

to the establishment of the synapse between DCs and

T cells is currently under investigation. This concept is

strongly supported by the observations that co-stimu-

latory molecules (CD86) are clustered with MHC II

molecules en route for the surface and that T cells

engagement polarises the direction of tubules formation

[14,31��]. Targeted delivery of pre-assembled presenta-

tion molecules would greatly facilitate the scanning by

T cell receptors of the DC surface. The rapid detection

of matching peptide–MHC complexes and activation

molecules is likely to be an important step in optimising

synapse formation and DC–T-cell interaction. Internal

membrane organisation and lipid dynamics are there-

fore vital in regulating antigen presentation. This view

is reinforced by the involvement of membrane micro-

domains in synapse formation and T cell activation. As

much as 50% of surface MHC class II has been shown

to reside in lipid rafts, and the disruption of these

cholesterol-enriched microdomains inhibits antigen

presentation [39,40].

Figure 1
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Confocal microscopy of immature and mature DCs stained for MHC class II (red) and cathepsin S (green). Cathepsin S is mainly localised in the

lysosomes and MHC class II is redistributed to the surface of DCs upon LPS stimulation.
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Interestingly, clustering of functional peptide-loaded

MHC II molecules (5–20%) and CD86 within tetraspan-

nins (e.g. CD82)-containing microdomains has been

detected not only on the cell surface [41��], but also

in lysosomes, where all these molecules are enriched

[42,43]. Although contradictory on the importance of

cholesterol-enriched microdomains in antigen presenta-

tion, these reports have both introduced the concept that

all MHC II molecules are not functionally equal and that

pre-assembled endosomal clusters targeted to the surface

might have specific functions. In addition to the facil-

itation of T cell activation by recruitment of MHC-II-

enriched microdomains at the synapse, a function of

signal transduction within DCs has also been proposed

for these clustered MHC II molecules [44�]. This signal-

ling pathway would be used by DCs to coordinate MHC-

class-I-restricted presentation of exogenous antigens

(cross-presentation) with MHC class II presentation

[44�]. This DC-specific function is likely to increase

dramatically the spectrum and therefore the efficiency

of the immune response. Conceptually this type of coor-

dination might offer an interesting read-out to under-

stand the general role of membrane microdomains in

signal transduction.

Figure 2
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In iDCs, MHC class II molecules are sorted away from H2-DM in the internal vesicles of MVBs. The combination of low endosomal proteolytic activity

and MHC class II segregation in lysosomes strongly decrease the efficiency of antigenic peptide loading in iDCs. (a) Stimulation of DCs by

pathogen motifs, such as LPS, induces lysosomal membrane redistribution, proteolytic activation and upregulation of specific molecules by the

maturing cells. (b) These events induce the sorting of peptide-loaded MHC class II into a tubule–vesicular membrane network before their arrival at the

cell surface. It is still debated if this step occurs directly by fusion of the tubules with the plasma membrane or an additional vesicular step is required

(CIIV). This last triage step permits the pre-assembly of discrete stimulation packages comprising MHC II molecules, B7-2 and probably other

co-stimulatory molecules. This assembly contributes directly to immunological synapse formation by polarising the delivery of all the necessary

antigen presentation components towards the T cell contact zone. (c) The passage of antigens from the endocytic pathway towards the cytosol

permits MHC class I presentation of peptides from exogenous origin (cross-presentation). This phenomenon is specific to DCs and is induced by

interactions with pathogen motifs or helper T cells; however, the molecular machinery implicated in this process is still elusive.
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Another way out of the lysosomes?
MHC class I peptide loading occurs within the ER. The

quasi-exclusive participation of the proteasome for

antigenic peptide generation and of TAP (transporter-

associated with antigen presentation) transporters for

cytosol-to-ER translocation is now well documented

[45,46]. Only DCs, among other APCs, are capable of

performing cross-presentation,which consists of the load-

ing by MHC class I of exogenous peptides derived from

endocytosed antigens [47,48��]. Cross-presentation implies

thepossibility for antigens to exit lysosomes or alternatively

for exogenous peptides to be loaded onto endosomal MHC

class I which are abundant in DCs [49]. Cross-presentation

requires proteasome activity and functional TAP mole-

cules [47]. This strict dependency supports the model

that lysosome-to-cytosol translocation of the internalised

antigens has to occur before proteasome processing,

TAP-mediated transport in the ER lumen and MHC

loading [47]. Lysosome-to-cytosol passage seems to be

size-dependent and controlled by DC maturation and T

cell interaction [44�].

Recent evidence on the recruitment of ER membranes

during phagosome formation has opened new possibilities

to explain the mechanism of cross-presentation [50��]. By

acquiring ER membranes, phagosomes also receive TAP

transporters, as well as associated chaperones, proteasome

and translocon units. TAP molecules could still be func-

tional after incorporation in phagosome membranes and

promote the export of exogenous antigens from phago-

lysosomes to the cytosol. Thus the need for a specialised

transport machinery would be eliminated. Alternatively,

TAP molecules and the proteasome could play a role, direct

or indirect, in ER–phagosomes fusion. Their implication in

cross-presentation could therefore be a side effect of this

role and consequently MHC class I loading with exogenous

antigens could occur directly in the endocytic pathway [49].

The clear identification of the molecules responsible for

this phenomenon will probably solve this traffic dilemma,

which represents a fascinating cell biology problem.

Conclusions
In addition to being important for induction of immune

responses, DCs offer multiple examples of specialised

regulation of their endosomal system. The existence of

these processes implies that multiple cell types could use

the same processes for different purposes. By emphasis-

ing one or more of these processes normally difficult to

detect in standard laboratory cell lines, specialised cells

allow their identification and study. DCs are an incredible

source of such membrane-traffic processes, still to be fully

understood.
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