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Class I major histocompatibility complex (class I MHC) molecules, known to be
important for immune responses to antigen, are expressed also by neurons that
undergo activity-dependent, long-term structural and synaptic modifications.
Here, we show that in mice genetically deficient for cell surface class I MHC or
for a class I MHC receptor component, CD3z, refinement of connections be-
tween retina and central targets during development is incomplete. In the
hippocampus of adult mutants, N-methyl-D-aspartate receptor–dependent
long-term potentiation (LTP) is enhanced, and long-term depression (LTD) is
absent. Specific class I MHC messenger RNAs are expressed by distinct mosaics
of neurons, reflecting a potential for diverse neuronal functions. These results
demonstrate an important role for these molecules in the activity-dependent
remodeling and plasticity of connections in the developing and mature mam-
malian central nervous system (CNS).

The development of precise connections in
the CNS is critically dependent on neural
activity, which drives the elimination of in-
appropriate connections and the stabilization
of appropriate ones. In the visual system of
higher mammals, the refinement of initially
imprecise axonal connections requires spon-
taneously generated activity early in develop-
ment and visually driven activity later (1–4).
Fine-tuning of neural connectivity is thought to
result from changes in synaptic strength, driven
by patterned impulse activity (1, 2, 5, 6).

To identify molecules critical for activity-
dependent structural remodeling, we previ-
ously conducted an unbiased screen for
mRNAs selectively regulated by blocking
spontaneously generated activity in the devel-
oping cat visual system. This manipulation
prevents the remodeling of retinal axons from
each eye into layers within the lateral genic-
ulate nucleus (LGN) (7–9). Although many
known neural genes were not detectably reg-
ulated by activity blockade, this screen re-
vealed to our surprise that members of the
class I MHC protein family are expressed by
neurons and are regulated by spontaneous
and evoked neural activity (10). Neuronal
class I MHC expression corresponds to well-
characterized times and regions of activity-
dependent development and plasticity of
CNS connections, including retina, LGN, and
hippocampus. Furthermore, the mRNA for

CD3z [a class I MHC receptor subunit in the
immune system (11)] is also expressed by
neurons (10), consistent with its interaction
with class I MHC during activity-dependent
remodeling and plasticity. Although class I
MHC is primarily known for its function in
cell-mediated immune recognition, the above
findings from our differential screen suggest
that class I MHC molecules may play roles in
structural and synaptic remodeling in the de-
veloping and mature CNS.

To explore these possibilities by genetic
means, we first confirmed by in situ hybrid-
ization that class I MHC and CD3z were
expressed in the developing mouse CNS. Be-
cause numerous class I MHC genes exist in
the mouse genome (12), we used a pan-
specific cDNA probe expected to detect
many class I MHC molecules (13). This
probe detected elevated amounts of mRNAs
in the dorsal LGN (dLGN) during the first
two postnatal weeks, exactly when ganglion
cell axons sort into eye-specific layers in the
mouse (14); mRNA levels declined at later
ages (Fig. 1A, compare postnatal days P6 and
P40). Expression was also evident in the gan-
glion cell layer of the retina (Fig. 1A, P6 eye),
in neocortex (in layer 4 at early ages and in
deeper layers later; Fig. 1A), and in granule
and pyramidal cell layers of the hippocam-
pus (Fig. 1A, P40, and Fig. 2). CD3z
mRNA, like that of class I MHC, was
expressed in the mouse dLGN during the
first two postnatal weeks (Fig. 1B); expres-
sion appeared higher medially. CD3z
mRNA was also detected in small amounts
in P40 hippocampus (15). Therefore, as in
cat (10), class I MHC and CD3z transcripts
are present in the developing murine CNS at
locations and times consistent with a role for
these molecules in activity-dependent struc-

tural remodeling and synaptic plasticity.
Strikingly, different class I MHC genes

are expressed in unique subsets of neurons
throughout the mature CNS, as revealed by
using probes (13) that react more specifically
with each of two class Ia (H–2D, H–2K ) or
two class Ib MHC genes (Qa-1, T22). For
example, within the somatosensory cortex,
H–2D probe signal was distributed through
many layers but was strongest in layer 4;
Qa-1 signal was specific to layer 6, and T22
signal was evident in both layers 5 and 6 (Fig.
2). H–2D and T22 signals were both strong in
the pyramidal layers of the hippocampus and
in the habenula; in contrast, that of Qa-1 was
weak in those locations (Fig. 2). Transcripts
detected by the T22 probe were particularly
abundant in the thalamic reticular nucleus,
globus pallidus, and substantia nigra [Fig. 2
and (15)]. H–2K signal paralleled that of
H–2D but was much lower throughout the
brain (16). The distinct expression patterns
detected by these probes extended prior in-
ferences from RNase protection experiments
in cat (10) and demonstrated conclusively
that several class I MHC mRNA subtypes are
differentially expressed by distinct subsets of
neurons in the CNS. These findings suggest a
potential for functional diversity among class
Ia and Ib genes within the CNS. Such heter-
ogeneity of function occurs among these
genes within the immune system (17).

To test directly our hypothesis that class I
MHC is required for activity-driven structural
remodeling and synaptic plasticity, mice de-
ficient either for cell surface class I MHC
expression or for CD3z were analyzed. Be-
cause numerous class I MHC genes may be
expressed by specific subsets of neurons (Fig.
2), we examined mice lacking two molecules
required for the stable cell-surface expression
of nearly all fully assembled class I MHC
molecules: b2-microglobulin [b2M, a class I
MHC cosubunit (18)], and TAP1 [a compo-
nent of the transporter that supplies peptides
to class I MHC enroute to the cell surface (19,
20)]. b2-M is expressed by neurons in LGN,
cortex, and hippocampus (10) and, as in non-
neuronal cells, induction of class I MHC on
the cell surface of neurons requires expres-
sion of b2M and TAP1 mRNAs (21). In
addition, to examine whether CD3z-contain-
ing receptors were involved in class I MHC–
mediated signaling in the CNS, we analyzed
mice lacking CD3z (22). When raised in a
germ-free facility, all mutant mice are out-
wardly normal and are not obviously differ-
ent from wild-type mice in weight, body
length, appearance, or behavior.

We hypothesized that mice deficient in
class I MHC–mediated signaling might have
abnormal patterns of retinogeniculate projec-
tions because blockade of neural activity si-
multaneously prevents the segregation of ret-
inal ganglion cell axons into eye-specific lay-
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ers and reduces class I MHC expression in
the LGN (7–10). The normal adult mouse
dLGN has a small layer that receives inputs
from ganglion cells in the ipsilateral eye;
inputs from the contralateral eye occupy the
remainder of the dLGN (Fig. 3A). The refine-
ment of these eye-specific connections in the
mouse occurs between postnatal day 4 (P4)
and P8 (14). We therefore examined the dis-
tribution of retinal inputs at P13, 5 days after
segregation was complete, using the antero-
grade transport of horseradish peroxidase–
conjugated wheat germ agglutinin (WGA-
HRP) injected into one eye (23). Compared
with wild-type animals (Fig. 3, A and F,
b2M1/1), the pattern of the retinogeniculate
projection was significantly altered in all
three mutant genotypes tested. This point is
best appreciated by inspecting the size and

shape of the ipsilateral retinal projection to
the dLGN (Figs. 3, A to E). Although all
mutants still form an ipsilateral patch located
approximately normally in the mediodorsal
dLGN, the area of this patch was significantly
larger in mutant mice and, in extreme cases,
was accompanied by multiple ectopic clusters
of inputs that were never observed in wild-
type mice (Fig. 3, C and E, arrowheads).
These ectopic clusters appeared in medial
areas of the dLGN, where the highest levels
of CD3z mRNA are normally present (com-
pare Fig. 3, C and E, with Fig. 1A). In these
extreme cases, ectopic clusters were also ob-
served in the ipsilateral superior colliculus,
another retinorecipient target that expresses
low-to-moderate levels of class I MHC
mRNA in mouse (15).

To assess quantitatively the altered retino-

geniculate projection in mutant mice, com-
puterized image analysis was used to measure
the fraction of dLGN area occupied by the
ipsilateral projection. All image analyses
were carried out by an observer blind to
genotype (24). In all mutant genotypes, there
was a significant increase in area occupied by
the ipsilateral projection over that of wild-
type controls [Fig. 3F: b2M–/–, 130.3 6 7.3%
(n 5 10); b2M–/–TAP1–/–, 133.3 6 5.7%
(n 5 13); CD3z–/–, 122.7 6 4.2% (n 5 13);
wild-type b2M1/1, 100.0 6 9.1% (n 5 12);
P , 0.05, Student’s two-tailed t-test]. These
observations support the hypothesis that class
I MHC function is required for the develop-
mental refinement of the retinal projections
and the formation of precise eye-specific re-
gions in the LGN.

Although the refinement of retinogenicu-
late axons was abnormal in mutant mice,
many other aspects of LGN development ap-
pear to proceed normally. The histological
appearance, size, shape, and location of
the dLGN and thalamus, as viewed in
Nissl-stained sections, were indistinguishable
among all experimental groups (15). The
bulk of the ipsilateral projection was posi-
tioned, as expected, in the binocular region of
the dLGN. At the ultrastructural level, the
synaptic organization of the LGN in b2M–/–

TAP1–/– mice appeared qualitatively indistin-

Fig. 1. Class I MHC expression in mouse CNS. (A) Expression of class I MHC transcripts in coronal
sections of the mouse CNS at P6 and P40 and in a cross section of P6 eye (13). Left column,
adjacent Nissl-stained section; middle column, hybridization with antisense riboprobe under
dark-field optics; right column, hybridization with control sense probe. D, dorsal; L, lateral; hc,
hippocampus; ctx, neocortex; gcl, ganglion cell layer. Arrowheads and dashed lines indicate dLGN.
Scale bar for P6 and P40 brains, 0.5 mm; scale bar for P6 eye, 250 mm. (B) Expression of CD3z in
the dLGN during eye-specific layer formation. Upper panel, adjacent Nissl-stained coronal section
of P6 mouse brain (arrowhead, dLGN). Middle panel, hybridization with CD3z antisense probe
(dashed lines, dLGN); hybridization is also present in the ventroposterior nucleus of thalamus (down and
to right of dLGN). Lower panel (cptr), excess of unlabeled competitor probe. Scale bar, 200 mm.

Fig. 2. Expression of multiple class I MHC sub-
classes in distinct regions of the mature CNS.
Coronal sections of P40 mouse brain analyzed
by in situ hybridization, using subclass-specific
probes indicated at top of each panel (13). S1,
somatosensory cortex; hb, habenula; hc, hip-
pocampus; rs, retrosplenial cortex; tr, thalamic
reticular nucleus; gp, globus pallidus. Numerals
(4, 6, 516) indicate neocortical layers. Scale
bar, 1 mm.
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guishable from that of wild type (23). Reti-
nogeniculate axons were well-myelinated,
and glomeruli and R-type synaptic boutons
[hallmarks of retinogeniculate synapses; (25–
27)] were present, indicating that normal ret-
inal synapses do form in the LGN (Fig. 3G).
These observations suggest that many activ-
ity-independent processes (1, 2, 28, 29) are
not perturbed in mice with abnormal class I
MHC function.

Because similar abnormalities in the ipsi-
lateral projection result from blockade of
spontaneous activity at comparable ages in
the cat or ferret visual system (7–9), we tested
whether the mutant retinogeniculate pheno-
types were secondary to abnormal retinal ac-
tivity. Calcium imaging of mutant retinas
revealed spontaneous retinal waves with spa-
tiotemporal properties indistinguishable from
those of normal mice (30). Thus, we ascribe
abnormalities in the mutant retinogeniculate
projection directly to a loss of class I MHC
signaling downstream of neural activity.

Because activity-dependent structural re-
organizations during development are thought
to arise from cellular mechanisms of synaptic
plasticity (1, 2, 6), we next asked whether
synaptic plasticity is altered in mutant mice.
Because little is known about such mecha-
nisms in the developing LGN, we used a
well-characterized model system for studying
long-lasting changes in the strength of syn-
aptic transmission: the Schaffer collateral-
CA1 synapse of the hippocampus (31, 32).
Class I MHC and CD3z were both expressed
in the adult hippocampus (Fig. 1) (10, 15).
Furthermore, class I MHC immunoreactivity
can be detected in synaptosome preparations,
suggesting that some class I molecules are
synaptically associated (33). We therefore as-
sessed hippocampal synaptic plasticity in
wild-type and mutant mice. Data collection
was performed by an observer blind to geno-
type (34).

In wild-type mice (C57BL/6), tetanic
stimulation (4 3 100 Hz) resulted in a sus-
tained increase in the slope of the field exci-
tatory postsynaptic potential (fEPSP) (167 6
13% of pretetanus baseline; n 5 15; Fig. 4, A
and C). In contrast, in CD3z–/– mutant ani-
mals, LTP in response to the same tetanus
was significantly enhanced relative to that in
wild-type mice (248 6 29% of baseline; n 5
8; P , 0.05; Fig. 4, A and C). A similar
enhancement of LTP was observed in b2M–/–

TAP1–/– mutant mice (227 6 22% of base-
line; n 5 10; P , 0.05; Fig. 4C). Basal
synaptic transmission is not significantly dif-
ferent among all experimental groups (35).
Enhanced LTP in gene knockout animals was
not due to changes in inhibition, because
GABAA-mediated transmission was blocked
with 100 mM picrotoxin in all experiments.
Nor was the enhanced LTP due to induction
of an N-methyl-D-aspartate (NMDA) recep-

tor-independent form of LTP, because LTP
was completely abolished in all genotypes in
the presence of the NMDA antagonist 2-ami-
no-5-phosphonovalerate [50 mM D-APV;
Fig. 4B and (36)].

It is conceivable that enhancement of LTP
seen in these genotypes is due to some non-
specific effect of immune compromise on the
CNS. Thus we also examined LTP in a more
severely immunodeficient strain of mice that
lacks recombination activating gene-1
(RAG1). RAG1 is required for production of
B and T cells and is also transcribed by
neurons in the CNS (37, 38). LTP in RAG1–/–

mice was indistinguishable from that of wild
type [153 6 13% of baseline (n 5 10),
compared with 167 6 13% in wild type; P 5
0.48; Fig. 4C], indicating that the LTP abnor-
malities seen in b2M–/–TAP1–/– or CD3z–/–

mice are specific to their genotypes rather
than to immune status.

Synaptic plasticity in the hippocampus is
dependent on stimulation frequency, with
high frequencies producing LTP and low fre-
quencies producing LTD (31, 39–41). We

therefore examined the effect of other stimu-
lation frequencies on synaptic plasticity in
animals deficient for class I MHC signaling.
In adult wild-type slices, the delivery of 900
pulses at 0.5 Hz induced significant LTD
(82 6 6% of baseline; n 5 8; P , 0.05; Fig.
4D). In adult slices from both mutant geno-
types, however, there was no significant
change in fEPSP slope upon 0.5 Hz stimula-
tion [CD3z–/–, 107 6 7% of baseline (n 5 5,
P 5 0.29); b2M–/–TAP1–/–, 99 6 5% of
baseline (n 5 8, P 5 0.78); Fig. 4D]. Fur-
thermore, after 900 pulses at 1 Hz, transmis-
sion was significantly enhanced over baseline
in both CD3z–/– (141 6 14% of baseline, n 5
5, P , 0.05) and b2M–/–TAP1–/– slices
(128 6 9%, n 5 6, P , 0.05) but was
unchanged in wild-type slices (94 6 5%, n 5
14, P 5 0.41; Fig. 4D). Thus, in mutant mice,
LTD could not be detected, and the frequen-
cy-response curve of hippocampal synaptic
plasticity was consistently shifted across a
broad range of stimulation frequencies.

These results indicate that class I MHC/
CD3z signaling is important for mediating

Fig. 3. Abnormal retinogeniculate projections but normal dLGN ultrastructure in mice deficient in
class I MHC signaling. At P12, one eye was injected with WGA-HRP (23); after 1 day, anterograde
axonal transport results in labeling of the entire retinal projection to the LGN. Labeling pattern in
the dLGN is shown in bright-field optics (label is black) or as dark-field composites [label is white;
see (24)]. (A) Representative projection from retina to dLGN contralateral (dashed lines; coronal
section; dorsal is up; lateral is left) or ipsilateral to eye injected with WGA-HRP (asterisks indicate
labeled area from ipsilateral eye: lateral is to right) in a P13 b2M1/1 wild-type mouse and a b2M–/–

mutant mouse. (B and C) Representative (B) and extreme (C) examples of the projection from the
ipsilateral eye observed in b2M2/2TAP12/2 mice. (D and E) Representative (D) and extreme (E)
examples of the projection in CD3z–/– mice. Arrowheads indicate ectopic projections, which appear
extensive under the more sensitive dark-field optics. Scale bar, 200 mm. (F) Graph of areas (6SEM)
occupied by the ipsilateral retinal projection to the LGN for b2M1/1 (wild-type), b2M–/–, b2M–/–

TAP1–/–, and CD3z2/2 mice (24), normalized to total dLGN area. The ipsilateral projection area in
b2M1/1 animals is set as 100% (horizontal dashed line). Asterisks indicate significant differences
from b2M1/1 mice (P , 0.05, Student’s two-tailed t test). (G), Electron micrograph of the dLGN
from a b2M–/–TAP1–/– mouse (at P24), showing a typical R-type synaptic bouton (R) making
contacts with a dendrite (d). A well-myelinated axon (ax) is also present in this field. Scale bar, 1
mm.

R E P O R T S

www.sciencemag.org SCIENCE VOL 290 15 DECEMBER 2000 2157



activity-dependent synaptic depression, be-
cause, in mutants, there is a shift in the
bidirectional regulation of synaptic strength
[i.e., the frequency response function (39–
41)] that favors potentiation. In the absence
of class I MHC or CD3z, patterns of neural
activity that normally have no effect on syn-
aptic strength or that lead to synaptic depres-
sion result, instead, in abnormal synaptic
strengthening. Likewise, in the dLGN, en-
hanced LTP and lack of LTD at the develop-
ing retinogeniculate synapse could account
for the structural phenotype observed: a per-
sistence of inappropriate connections that
would be normally be removed via an activ-
ity-dependent process of synaptic weakening
during eye-specific segregation (14, 42–44).

Class I MHC and CD3z are expressed in the
CNS by specific sets of neurons that undergo
activity-dependent changes (10). Here, we
show that mice lacking these molecules exhibit
abnormalities in connections between these
neurons, suggesting a direct neuronal function
for class I signaling. In addition, both mutants
have strikingly similar phenotypes, implying
that class I MHC signaling in the brain is
transduced via a CD3z-containing receptor, ei-
ther an unknown CNS-specific or a known
immune receptor. The expression patterns of
class I MHC and CD3z in the CNS are consis-
tent with signaling via a number of possible
receptor-ligand configurations. For example,
both class I MHC and CD3z are expressed by
neurons in the hippocampus; in addition, class I
MHC mRNA is also expressed by retinal gan-
glion cells when CD3z is detected in the dLGN
[Fig. 1A and (10)]. Detailed information con-

cerning the ultrastructural localization of these
molecules will be needed to resolve this issue.

Whatever the case, the evidence to date
supports a model in which class I MHC func-
tions in the CNS by engaging CD3z-containing
receptors to signal activity-dependent changes
in synaptic strength that ultimately lead to the
establishment of appropriate synapses. Class I
MHC may act directly at the synapse to pro-
mote the elimination of inappropriate connec-
tions, by using signaling mechanisms already
characterized in immune cells (11), possibly via
phosphorylation of CD3z by fyn [a kinase pre-
viously implicated in hippocampal plasticity
(45)]. Because different class I MHC mem-
bers are expressed by different subsets of
CNS neurons, additional signaling specificity
may be furnished by the particular repertoire
of MHC molecules present in any given neu-
ron. In the immune system, recognition of
class I MHC by T cell receptors can result in
functional elimination of inappropriate self-
reactive T cell populations (46, 47). Our
results demonstrate that class I MHC is also
required for normal regressive events in the
developing and adult CNS, including activi-
ty-dependent synaptic weakening and struc-
tural refinement.
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