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diluted in phosphate-buffered saline (PBS) containing 0.1% bovine serum albumin (BSA)
and usually applied by a picospritzer (Parker) coupled to standard micropipettes or to
double-barrelled theta glass capillaries (Clark). The application pipettes were placed at a
distance of roughly 15 mm above the soma. When NTs were applied at intervals of 5 min or
longer, the NT-elicited responses remained stable for up to 2 h. At shorter application
intervals, probably because of desensitization, the responses were smaller or absent. In
some experiments, BDNF was bath-applied. For this purpose it was directly dissolved in
ACSF containing (in mM): 10 bicuculline, 5 CNQX, 100 APV. The protein kinase
antagonists K-252a or K-252b (both diluted in ACSF; Calbiochem) were either applied to
the somata by micropipettes or by a gravitation-based microperfusion system. All plastic
and glassware were blocked twice with PBS containing 0.1% BSA before exposing the
material to NTs to prevent binding to the storage and application ware. In some control
experiments, BDNF was heat inactivated by incubating it for 30 min at 50 8C or protease
inactivated by a 15-min treatment with papain (200 U, 0.5 mg ml−1, Boehringer Man-
nheim).

Sodium imaging
Cells were loaded with the fluorescent Na+ indicator dye sodium-binding benzofuran-
isophthalate (SBFI, 1 mM, Molecular Probes) through the patch pipette. Fluorescence
images were acquired in parallel to the whole-cell recordings by a variable scan digital
imaging system (TILL Photonics) attached to an upright microscope (Zeiss Axioskop, 40×
water immersion objective, NA 0.75). The fluorescence signals from the somata were
obtained at excitation wavelengths of 345 nm (isosbestic point) and of 380 nm (Na+-
sensitive wavelength) and were background corrected. Data were expressed as changes in
fluorescence ratio (345/380 nm) using Igor Pro software (Wavemetrics) for analyses.
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Here we report the first complete sequence and gene map of a
human major histocompatibility complex (MHC), a region on
chromosome 6 which is essential to the immune system (reviewed
in ref. 1). When it was discovered over 50 years ago the region was
thought to specify histocompatibility genes, but their nature has
been resolved only in the last two decades. Although many of the
224 identified gene loci (128 predicted to be expressed) are still of
unknown function, we estimate that about 40% of the expressed
genes have immune system function. Over 50% of the MHC has
been sequenced twice, in different haplotypes, giving insight into
the extraordinary polymorphism and evolution of this region.
Several genes, particularly of the MHC class II and III regions, can
be traced by sequence similarity and synteny to over 700 million
years ago, clearly predating the emergence of the adaptive
immune system some 400 million years ago. The sequence is
expected to be invaluable for the identification of many common
disease loci. In the past, the search for these loci has been
hampered by the complexity of high gene density and linkage
disequilibrium.

The impetus to obtain the complete sequence of the MHC was
provided by the complex biology and genetics of the histocompat-
ibility regions H-2 and HLA1. It is therefore no surprise that the
MHC at 6p21.31 is among the first multi-megabase regions of the
human genome to be completely sequenced. With over 200 identi-
fied loci, the MHC is the most gene-dense region of the human
genome sequenced so far. It also encodes the most polymorphic
human proteins, the class I and class II molecules, some of which
have over 200 allelic variants. This extreme polymorphism is
thought to be driven and maintained by the long-standing battle
for supremacy between our immune system and infectious patho-
gens. Underlining its biomedical importance, the MHC is asso-
ciated with more diseases than any other region of the human
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Seattle, Washington 98104, USA); H. Inoko (Tokai University School of Medicine, Department of
Molecular Life Science, Bohseidai, Isehara, Kanagawa 259-11, Japan); and L. Rowen (University of
Washington, Seattle, Washington 98195, USA). A full list of contributors appears at the end of the paper.
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genome, including most, if not all, autoimmune conditions (for
example, rheumatoid arthritis and diabetes2). Phenotypes with
different aetiologies have also been linked to the region, ranging
from cancer to sleeping and reading disorders.

The 3.6-megabase (Mb) virtual MHC sequence reported here is
derived from a patchwork of different haplotypes and has been
assembled from the work of four main groups3 (see Acknowl-
edgements). In addition to the gene map described below, further
interesting attributes have started to emerge from preliminary
analyses. Long before the term ‘single nucleotide polymorphism’
(SNP) was coined, variations in the coding and noncoding
sequences were observed in the MHC of different individuals and
were used to delineate ancestral haplotypes4. The available data
already indicate that the extreme polymorphism characterizing the
MHC is not homogeneous throughout the entire region. The
variation in the noncoding sequences appears to peak around the
most polymorphic gene loci and ‘hitch-hiking’, as the result of
overdominant allele selection (heterozygote advantage), has been
suggested to explain this phenomenon. Variation levels of 5–17%
have been reported at some of these loci (HLA-DP, DQ, B and C),
which are by far the highest levels found in the human genome so
far5–8. A systematic analysis and verification of SNPs across the
entire MHC is still in progress. Sequence comparisons revealed
several MHC genes (TUBB, TNXB, PBX2, NOTCH4, RXRB and
RPS18) to be syntenic in invertebrate genomes such as Drosophila
melanogaster and Caenorhabditis elegans, indicating that the origin
of the locus now known as MHC predates the emergence of the
adaptive immune system9.

Currently, the MHC is the second longest contiguous sequence in
the human genome. The determination of very long sequences will
allow the exploration of global chromosomal features such as
isochores (long-range regions of homogenous G þ C content),
replicons and repeat dynamics in much greater detail than before.
The low G þ C isochore covering the classical class II region (see
poster or Supplementary Information) is one of the best studied
isochores in the human genome10,11. Its predicted boundaries
correlate precisely with switching of replication timing from
‘later’ replication in the classical class II region to ‘earlier’ replication
at the centromeric boundary (P. Johonnett and D. Sheer, personal
communication) and at the telomeric boundary12. This may
represent a link between isochores and the elusive replicon structure
of the human genome13,14.

Figure 1 and the poster accompanying this issue of Nature (also
available as Supplementary Information) show the complete gene
map of all 224 gene loci identified in this particular composite of
MHC haplotypes. A list of the genes and their alternative designa-
tions is provided as Supplementary Information. Ninety-three of
the 224 loci (41.5%) were discovered or located to the MHC as a
direct result of the genomic sequence. Historically, the MHC has
been divided into three regions: class II (centromeric), class III and
class I (telomeric)15. Analyses of the immediate flanking regions
reveal that the ‘classical’ class I and class II regions extend much
further than previously thought11,16. These regions are here referred
to as ‘extended’ class I and class II regions. A set of more than seven
genes involved in inflammation, including three members of the
tumour necrosis factor (TNF) superfamily, within the class III
region is sometimes specified as the class IV region17. Various
other genes associated with the immune system are distributed
throughout the MHC. The total immune system constituent of the
MHC is 39.8% of the expressed loci (see poster or Supplementary
Information) including at least 10 novel genes identified from the
genomic sequence (Fig. 1). The clustering of immune-related genes
in the MHC region is so striking that it seems unlikely to be
coincidental18. The classical class II region is particularly notable
because almost all of the genes are of immune function, namely class
II A and B genes, LMPs, TAPs and TAPBP in the extended class II
region. This clustering of immunity genes in the MHC may reflect
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Figure 1 Complete gene map of the MHC reference sequence reported here. Genes are
shown in order from telomere to centromere but not to scale. Gene loci that were
discovered or located to the MHC as a direct result of the genomic sequence are indicated
by filled boxes. As will be the case for the rest of the human genome, the MHC reference
sequence is a composite of different haplotypes. However, in regions with known
differences in gene content (C4 region in class III and DR region in the classical class II
region) only single haplotypes were sequenced (C4AQ0, C4B1 in the class III region and
DR52 in the class II region).
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co-evolution of functions or co-expression of related transcripts.
However, the proportion of immune system genes in the genome in
general is not known at present and it may be equally high. The
average gene density (including pseudogenes) over the entire
3.6 Mb of the MHC is 1 gene per 16 kilobases (kb), with distinct
regional variations. Particularly interesting is the proportion of
expressed genes in relation to pseudogenes. Except in certain
haplotypes, where the C4 regions have duplicated (Fig. 1), there
appear to be no or very few pseudogenes in the class III region. In
contrast, the class I and class II regions are full of pseudogenes. Both
class I and class II regions appear to have duplicated many times,
generating novel gene family members which have then diverged
into new functions. A possible explanation for maintaining such
high levels of pseudogenes could be that they are involved in
generating new alleles by gene conversion, a phenomenon that
has been observed at other human immune loci19.

The first complete MHC sequence provides an important new
tool for studying the genetics, biology and evolution of human
multigene families, populations and disease. In the long term, the
biological importance of the MHC is likely to justify the re-
sequencing and epigenetic analysis of several common haplotypes,
which differ markedly in sequence and gene content. Efforts
towards this goal are already in progress, as they will facilitate the
precise identification of many disease loci. Typing of new micro-
satellites derived from the genomic sequence has already allowed us
to narrow down the candidate region for psoriasis vulgaris (an
inflammatory skin disorder) to a critical segment including four
genes—S, PG8, SC1 and OTF3 (H. Inoko, unpublished data). The
discovery of regions paralogous to the MHC on chromosomes 1, 9
and 19 is indicative of ancient duplications and possibly the
remnant of tetraploidization in the early vertebrate genome20,21.
The sequences of these related regions and of other vertebrate
MHCs are eagerly awaited22. M
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Here we report the sequence of the region that determines rapid
allograft rejection in chickens, the chicken major histocompat-
ibility complex (MHC). This 92-kilobase region of the B locus1–4

contains only 19 genes, making the chicken MHC roughly 20-fold
smaller than the human MHC5. Virtually all the genes have
counterparts in the human MHC, defining a minimal essential
set of MHC genes conserved over 200 million years of divergence
between birds and mammals. They are organized differently, with


