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Abstract

Heat shock proteins (hsps) are among the most abundant intracellular proteins. Their synthesis is rapidly up-regulated by

various ‘stressors’ including temperature, glucose deprivation, infection and cancer. Certain hsps are able to: (i) associate and

chaperone a large variety of cellular peptides; (ii) be efficiently internalized by antigen presenting cells (APC) through receptor-

mediated endocytosis; (iii) channel antigenic peptides they chaperone in the APC’s MHC class I presentation pathway; (iv) and

stimulate inflammatory cytokines, chemokines and co-stimulatory molecules through the NFkb signaling pathway.

Extracellular release of hsps upon necrotic cell death and their modulated access at the surface of some cells, can be

considered as a putative ‘danger’ signal. Based on the ancient origins and structural conservation of hsps, it has been proposed

that, the role of hsps in immunity emerged early in evolution and to be widespread in extant organisms. Data from studies with

the frog Xenopus support this proposition.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Heat shock proteins (hsps) are evolutionarily

ancient and highly conserved intracellular molecular

chaperones constituting several multigenic super-

families. Hsps are present in all the different

subcellular compartments (e.g. nucleus, mitochon-

dria, chloroplast, endoplasmic reticulum, cytosol) of

all cell types from prokaryotes and eukaryotes. The

initial nomenclature for hsps was based on their

apparent molecular weight (i.e. hsp84, 85, 86, etc.)

and they were grouped according to their nearest size

(e.g. the hsp90 kD family). The availability of

nucleotide and deduced amino acid sequences now

allows a more systematic classification with a

phylogenetic basis. Members in a family exhibit a

high degree of sequence identity (even between

prokaryote and eukaryote members), whereas there

is no homology between families.

Hsps are defined as molecular chaperones that non-

convalently bind exposed hydrophobic surfaces of

non-native proteins [1]. Although most hsps are

constitutively expressed, their expression is up-

regulated by various physiological perturbations or

stressors (e.g. elevated temperature, hypoxia, ische-

mia, heavy metals, radiation, calcium increase,

glucose deprivation, cancer, and microbial infection).

Hsps perform essential biological functions under

both physiological and stressful conditions. General
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functions attributed to hsps include: (i) preventing

protein aggregates under physical stress; (ii) serving

as molecular chaperones in protein transport between

cell organelles; and (iii) contributing to the folding of

nascent and altered proteins [1–3]. Many other more

specific functions have been characterized for par-

ticular hsp types including a role in immunological

processes, the subject of this review.

An increasing body of data suggests that certain

hsps play a role in both innate and adaptive immunity

[4–7]. Hsps can elicit potent specific cellular adaptive

immune responses (e.g. CD8þ cytotoxic T-cell

effectors or classic CTLs) based on their ability to

chaperone antigenic peptides [4,5]. By mechanisms

that are less well understood, hsps can also act

independent of chaperoned peptides to directly

stimulate innate immune responses [8–10]. In fact,

it has been suggested [11] that some hsps may have

become specialized as a response modality to ‘stress’

associated with infection and cancer. Given the

ancient origin of hsps, such specialization may have

occurred early in evolution and, therefore, may be

common to a wide range of extant invertebrate and

vertebrate species. However, whereas the interaction

of hsps with immune system has become increasingly

well studied in mammals, little is known about the

phylogeny of hsp in immunity.

This review will focus mainly on two members of

the hsp70 family (hsp70 and hsc70) and a member of

the hsp90 family, gp96, their involvement in innate

and adaptive immunity is well documented. Three

major facets of hsp-immune system interactions will

be considered with respect to the evolution of

immunity: (i) the capacity of hsps to elicit T-cell

response specific against antigenic peptide they

chaperone; (ii) the ability of hsp to modulate innate

response that are independent of chaperoned peptides;

and (iii) hsp surface expression. Other immunological

aspects of hsp such as their role in autoimmunity and

cross-reactive antibody responses have been reviewed

elsewhere [12,13] and will not be considered here.

2. Structure and characterization of members

of the hsp70 and hsp90 families

Both hsp70 and hsp90 families include members

located in different cellular compartments (Fig. 1). In

vertebrates, two different hsp70 members are

expressed in the cytosol. The cognate HSC-70 is

constitutively expressed at low levels and is only

slightly inducible, whereas HSP-70 is not expressed in

most tissues and is highly stress-inducible [2,3]. I will

use hsp70 as a nominal term for both the inducible and

constitutive cytoplasmic forms. There is a 60% amino

acid sequence identity between eukaryotic hsp70s,

and a 40% identity between eukaryotic and the E. coli

hsp70-equivalent DnaK. Hsp70 binds ATP [14,15]

and the ATPase domain resides in a 44 kD N-terminus

fragment (Fig. 2). An 18 kD fragment containing

four-stranded anti-parallel b-sheets and a single a-

helix constitutes the peptide-binding domain that can

bind unfolded and folded peptides [16].

Several HSP-70 genes are located in the class III

regions of the human, mouse, and frog (Xenopus)

MHC [17–20]. Hsp70 in the cytosol interacts with

various factors including other hsps (hsp90, hsp40)

and regulatory components such as Hip and Hop that

act as adaptors between hsp70 and hsp90 [1].

Additional hsp70 family members include a mito-

chondrial form, hsp75 and a glucose-regulated protein

member located in the ER known as grp78 or Bip

[2,3]. Based on sequence homology, two hsp70-like

proteins have been characterized: the cytosolic

hsp110 and the ER-resident, glucose-regulated

grp170 [21].

There are also two cytosolic hsp90 members in

vertebrates (Fig. 1), hsp90a and hsp90b that are likely

Fig. 1. Intracellular localization of the different hsp70, hsp70-like

and hsp90 family members in eukaryotic cells.
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the result of a gene duplication event coincident with

the emergence of vertebrates [22–24]. The other

hsp90 member, gp96, resides in the lumen of the ER

(mainly in the rough ER; [25]) and is the most

abundant ER protein [26]. The primary structure of

gp96 is very similar to its hsp90 cytoplasmic

counterpart (50% amino acid sequence homology).

Unlike hsp90, however, gp96 contains an N-terminal

signal sequence (70 amino acid), characteristic of the

ER-targeted proteins, and a carboxy terminal KDEL

sequence (Lys-Asp-Glu-Leu), which is a retention/

retrieval signal from the golgi to the ER [26]. Global

alignment of all available hsp90 sequences and a

phylogenetic study of the different homologues

clearly indicate that cytosolic hsp90 and ER-resident

gp96 comprise a paralogous gene family [24]. Hsp90

and gp96 homologues have been identified in virtually

all metazoan taxa (Fig. 3) including slime molds

(Dictyostelium discoideum; [27]), plants [24,28],

invertebrates (C. elegans. [6]; S. purpuratus, Robert

unpublished), and vertebrates. A prokaryotic hsp90

homologue, called high temperature protein G

(HtpG), displays 40% amino acid sequence identity

with eukaryotic hsp90 members [24,29]. With respect

to unicellular eukaryotes, however, gp96 homologues

have thus far been found only in Leishmania major

[30], and an extensive search of the yeast Sacchar-

omyces cervisia database indicates the absence of

gp96 in this species [6]. The phylogenetic tree of

available gp96 sequences gives an idea of the extent

of the structural conservation of this molecule (Fig. 2).

The gene duplication giving rise to hsp90 and gp96

paralogues, therefore, is contemporary to the emer-

gence of eukaryotes.

Like the hsp90 and its prokaryotic counterpart

HtpG, gp96 is a phosphorylated anti-parallel rod-like

homodimer [31]. The degree of phosphorylation

varies with the cell type [32,33]. Dimerization is

promoted by hydrophobic interactions, but it can be

further stabilized under oxidizing conditions by a

disulfide-bridge between Cysteine 117 of the two

monomers [34,35]. Furthermore, gp96 forms oligo-

mers, and associates with numerous other proteins,

including different protein kinases [1], calreticulin,

calnexin [36], grp78/Bip [37], and grp170 [38].

Recently, an intriguing physical association of g96

with Toll-like receptors (TLR) in a murine B-cell line

has been reported [11]. Gp96 is also a calcium-

binding protein [39], and unlike hsp90, a glyco-

protein. Under normal condition, it is N-glycosylated

at Asn-196 with a high-mannose oligosacharide

moiety [35]. The gp96 dimerization domain has

been mapped in the C-terminal region (Fig. 3), and

its deletion abrogates dimerization [31].

With regard to regulation of its expression,

synthesis of gp96, like other glucose-regulated ER

proteins (grp78, grp170), is rapidly up-regulated

under glucose deprivation [1]. For example, culture

of the Xenopus A6 fibroblast cell line in medium in

which glucose has been replaced by a deoxyglucose

analogue, results in an induced and transiently

enhanced synthesis of grp78 and gp96 protein with a

maximal level occurring by 12–24 h of culture [40].

Enhanced synthesis also occurs in response to hypoxia

and reduction. Interestingly, in mice and humans, g-

interferon (IFN-g)-responsive elements are present in

the gp96 gene promoter, and IFN-g-induced up-

regulation of gp96 transcription has been shown [41].

Fig. 2. Scheme of the main structural features and peptide-binding

characteristics of hsp90 and hsp70 members. Presumed ATP-

binding sites with conserved Walker boxes (A,B) and the

dimerization domain of aligned hsp90 and gp96 are indicated.

Gp96 specific features include: N-terminal signal sequence (SS), C-

terminal endoplasmic reticulum retention signal (ER), the high-

mannose oligosaccharide moiety of Asn-196 residue and the

recently mapped minimal peptide-binding site with the surrounding

200 amino acid defining an hydrophobic pockets [65]. Residue

numbers are from mouse gp96. The general structure of Hsp70 and

HSC70 adapted from Ref. [3] include a N-terminal 44 kD ATPase

domain, a 18 kD peptide-binding domain and a 10 kD C-terminal

domain carrying the EEVD highly conserved terminal sequence

present in all eukaryotic hsp70. Residue numbers are from human

hsp70.
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Schematically, the immunogenicity of hsps results

from two different properties: (i) a peptide-dependent

capacity to chaperone and elicit adaptive CTL

responses against antigenic peptides, and (ii) a

peptide-independent immunomodulatory capacity.

Each of these properties will now be considered in

detail.

3. Peptide-dependent immunogenicity of hsps

Thanks in large part to the pioneering work of

Srivastava and his colleagues [4,5,42,43] as well as to

recent data from other labs [6,7], it is now well

established that hsps can elicit a potent specific

cellular adaptive immune response that depends on its

ability to chaperone a large variety of peptides

through the cellular milieu.

Immunization of mice with tumor-derived hsp

generates protective immunity against a subsequent

tumor challenge. For example, immunization of

BALB/c mice by subcutaneous injections of as little

as 10 mg gp96 purified from ‘syngeneic’ methylcho-

lanthrene-induced sarcomas (Meth-A tumors) specifi-

cally protects animals from subsequent challenges

with live Meth-A tumor cells. Other hsp family

members like hsp70 and hsp90 from mouse tumors

[44] have been reported to elicit immune protection

similar to that reported for gp96. The potency of anti-

tumor response elicited by hsps has been extended to a

therapeutic model in which regression of existing

tumors can be seen following injection of tumor-

derived hsps [8]. Generation of specific anti-tumor

response by hsps is not restricted to mice since

preliminary phase I and II clinical immunotherapy

trials appear promising [45,46]. Germane to this

review is the fact that we have demonstrated, by using

a model of transplantable tumors in the frog Xenopus,

that anti-tumor immunity elicited by gp96 and hsp70

is evolutionarily conserved [47,48]. Furthermore, in

mice, hsps generates protective immunity against

influenza virus [49] as well as Mycobacterium

Fig. 3. Phylogenetic analysis of available complete deduced amino acid sequence of gp96 homologues. Deduced amino acid sequences were

aligned using CLUSTALW algorithm. The relative sequence divergence between gp96 homologues was analyzed by the neighbor joining

matrix method with Poisson-correction (MacVector software, Oxford Molecular, WI). The tree was rooted with the prokaryotic hsp90

homologue HtpG. The accession number of the sequence analyzed are: H. sapiens, P14625 (SwissProt); C. familiaris, P41148 (SwissProt); S.

scrofa, Q29092 (GenBank); M. musculus, PO8113 (SwissProt); G. gallus, P08110 (SwissProt); X. laevis, (xxx); E. stoutii, (xxx); S. purpuratus,

(xxx); C. elelgans, Z69751 (GenBank); D. discoidium, AB040814 (GenBank); C. roseus, L14594 (GenBank); H. vulgare, S31862 (GenBank);

O. sativa, AB037681 (GenBank); L. infantum, AF253053 (GenBank); E. coli tpG, P10413 (SwissProt); X. laevis (AY187545); E. stoutii

(AY187546); S.purpuratus (AY187547).

J. Robert / Developmental and Comparative Immunology 27 (2003) 449–464452



tuberculosis and Listeria monocytogenes [50]. Hsp-

mediated anti-tumor murine immune responses in

vivo critically involves cytotoxic CD8 T-cell effec-

tors, and is abrogated when CD8 lymphocytes are

depleted either during the priming or the effector

phase [51]. In vivo depletion studies also suggest an

important involvement of macrophages during the

priming phase [51].

3.1. Peptide binding

In humans, mice, and frogs, hsp-mediated T-cell

responses depend on, and are specific for, the

chaperoned peptide. The ability of gp96 and hsp70

to bind peptides was first postulated, and then

demonstrated, by Srivasatava [4,5]. The initial

indirect evidence showed that protection against a

particular tumor could be obtained by immunization

with hsp derived from this tumor but not from another

tumor type or from normal tissue [44]. More direct

evidence revealed that peptide depletion abolishes the

tumor-protective capacity of hsp70 [52]. A large

variety of peptides, heterogeneous both in size (4–40

mer) and in sequence, can be eluted from gp96 by acid

treatment [53–57] and from hsp70 in presence of ATP

[52,57]. In a few cases, specific antigenic MHC class

I-restricted epitopes such as vesicular somatitis virus

[54,58] and ovalbumin, [57,59], have been purified

from, and identified in, the peptide pool eluted from

gp96, hsp90 and hsp70 from VSV-transformed or

ovalbumin-transfected stable cell lines.

Synthetic peptides can be complexed to hsp in

vitro [60] by moderate heat denaturation for gp96

and ATP treatment for hsp70. The extent of

reconstitution usually ranges between 1 and 10% of

hsp molecules loaded with exogenous peptides; but

up to 20% was obtained with hsp70 using an

optimized peptide containing four hydrophobic

amino acids flanked by two regions enriched in

basic residues [61,62]. There is still little known

concerning peptide-binding specificity by gp96. The

use of nonamer peptide sets, systematically altered at

position 2 and 9, suggest a bias of gp96 for

uncharged residues at these positions [56]. Although

the association of peptides with hsp is non-covalent,

it is remarkably stable, persisting many days in the

cold [63] and resisting denaturation (without heat

treatment) by SDS–PAGE [60].

The structural features of the mammalian hsp

peptide-binding domain and the crystal structure of

the bacterial hsp70 homologue DnaK, have been

resolved [64]. The peptide-binding pocket of hsp70

identified consists of four-stranded anti-parallel b-

sheets and a single a-helix. This conformation is

different from the MHC peptide-binding domain,

making it unlikely (unless additional exon shuffling is

considered) that the MHC peptide-binding domain

originates from an ancestral hsp70 gene [65]. For

gp96, a putative minimal peptide-binding site at the

amino acid position 624 – 630, adjacent to the

dimerization domain (Fig. 3), has been mapped

using a peptide tagged with fluorescent probes [66].

The surrounding region of over 200 amino acids

defines hydrophobic pockets whose tri-dimensional

modeling suggest a conformation similar to the MHC

class I peptide-binding domain. Although seductive,

this speculative model awaits to be supported by

experimental data, and the localization of gp96

peptide-binding site need to be corroborate to rule

out for example possible artifactual binding of

synthetic probes. This is particularly important since

studies from several laboratories [31,63] suggest that

dimeric rather than monomeric gp96 is the true

peptide-binding structure. Sequence alignment of

gp96 homologues in the portion involved in dimer-

ization and the peptide-binding site are highly

conserved. Therefore, it is likely that peptide-binding

is an evolutionary ancient property of gp96. In this

regard, it is also important to recall that the yeast

proteasome can generate peptides that fit in murine

MHC class I molecules [67], and therefore, that

peptides are potentially available to load hsp in any

eukaryotes. We have shown that Xenopus gp96 can

also form complexes in vitro with synthetic peptides

(8 and 19 mers; [47]) as stably and efficiently as can

mouse or human gp96.

3.2. Interaction of hsp with antigen presenting cells

The unique ability of hsps to generate a robust T-

cell response against minute amounts of chaperoned

antigenic peptides is thought to result mainly from the

specific interaction of hsps with antigen presenting

cells (APCs). A large body of data from in vitro

studies using murine and human cells [5] indicates

that APCs (e.g. peritoneal macrophages and dendritic

J. Robert / Developmental and Comparative Immunology 27 (2003) 449–464 453



cells (DC)) rapidly internalize purified or artificially

reconstituted hsp–peptide complexes by receptor-

mediated endocytosis. The antigenic peptide carried

by hsp is then channeled into the endogenous

processing pathway and presented to, and recognized

by, T-cells as a peptide–MHC class I complex [68].

This process is not observed with B-cells or

fibroblasts [68]. Specific in vitro CTL responses

have been obtained against a large variety of

chaperoned antigenic peptides including those from

tumors [4,8,69], virus-infected cells [54,70], minor

histocompatiblity [71] and model antigens [55,68,71],

and with purified native [4,69] as well as in vitro

reconstituted [61,70] hsp–peptide complexes.

Although MHC class I pathway classically pre-

sents endogeneous peptides, APC such as DC have the

capacity to take up, process and present exogeneous

antigens in association with MHC class I molecule.

This pathway is referred as cross-presentation and the

resulting CD8þ T-cell priming as cross-priming [72].

The capacity of hsp to deliver exogenous antigenic

peptide into the MHC class I presentation pathway is

now recognized as an important mechanism of cross-

presentation [62,73]. In mice, hsp purified from

virally infected cells of one MHC haplotype can

cross-prime anti-viral immune responses of mice of

another haplotype through the re- or cross-presen-

tation of antigenic peptide by the host MHC. In

contrast to MHC molecules, hsps are non-poly-

morphic and they bind peptides more heterogeneous

in size and sequences. Therefore, the repertoire of

cellular peptides they bind is unlikely to be restricted

by MHC haplotype.

The high degree of structural conservation of

hsp and its potential to cross-present antigen is

further exemplified by our comparative studies. We

have shown [47] that pulsing mouse macrophages

with Xenopus gp96 complexed in vitro with an

antigenic peptide results in the processing and re-

presentation of the chaperoned peptide to mouse

CTLs as efficiently as a peptide chaperoned by

murine gp96. This strongly suggests that the hsp–

APC interaction is phylogenetically conserved,

including the surface receptor that binds hsps (see

earlier). The re-presentation of peptide chaperoned

by hsp is approximately 400–200 £ more efficient

than loading antigenic peptide directly to class I on

live cells [68].

The uptake of hsp–peptide complexes is mediated

by receptors expressed at the surface of APC [62,74,75]

(see section 4). One such receptor interacting with gp96

has been identified as CD91, the receptor discovered for

its ability to bind a2-macroglobulin (a2-M; [76]).

CD91 is a member of the low-density lipoprotein (LDL)

family of scavenger proteins. Interestingly, evidence

that CD91 also mediates the uptake of calreticulin,

hsp70 and hsp90 by APCs and the re-presentation of

peptides has been obtained recently by inhibition

experiments with a2-M or anti-CD91 antibody [77].

Based on these results, CD91 has been proposed to be

the only receptor involved in cross-presentation of hsp-

chaperoned peptides. Although a critical role of CD91

in hsp cross-presentation is well documented, recent

studies suggest that this process is more complex and

may involve other receptors. First, a putative CD91-

independent internalization pathway has been

suggested for gp96 [78], although the involvement of

another receptor awaits further study. Second, antigen

cross-presentation by hsp70 at least in humans has been

shown to involve another scavenger receptor LOX-1

[79] rather than CD91, and evidence suggests that

CD40 is also implicated in the uptake of hsp70–peptide

complex by human APC [80]. Finally, beside endocytic

receptors, several signaling receptors have been

proposed to interact with hsps and activate APCs

(Section 4), including CD36 [81], Toll-like receptors

TRL-2/4 [82,83] and their co-factor CD14 [84,85], and

CD40 [80]. TLR-2/4 has been shown not only to bind

hsp60 [86] but also gp96 [82] and hsp70 [83].

While receptors mediating endocytosis of hsp such

as CD91 and LOX-1 are clearly required for

representation of peptides chaperoned, they do not

appear to have signaling ability. It has been suggested

[79] therefore that the T-cell response elicited through

APC’s activation and representation of antigenic

peptide bound by hsp results from a cooperation

between endocytic (CD91, LOX-1) and signaling

(CD14, TRL-2/4) receptors. Experiments are required

to determine if and how such receptor cooperation

occurs. How these receptors recognize ligands of

heterologous molecules (i.e. gp96, hsp70, a2-M) also

remains unresolved issues. Further processing of

internalized chaperoned peptides depends on a

functional proteasome [77] and is usually TAP-

dependent, although other pathways appear to be

involved in channeling peptides into the ER [62].
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However, the whole process of hsp–peptide complex

processing and peptide representation is still poorly

understood. This is a particularly important issue

since the cross-presentation ability of hsps constitutes

their main attractiveness as vaccines against intra-

cellular infections.

4. Peptide-independent immunomodulatory

capacity of hsps (chaperokine)

The characterization of a receptor-mediated uptake

of hsp–peptide complexes by APCs partially explains

the potency of hsp to elicit a specific response.

However, it has become evident that the initiation of

an immune response depends on the proper activation

of APCs through up-regulation of co-stimulatory

molecules and the release of various cytokines and

chemokines [86]. In this regard, a newly emerging

facet of hsps immunological properties should be

considered. Several in vitro studies have revealed that,

independent of their bound peptides, gp96, hsp90 and

hsp70 are able to induce macrophages to produce the

proinflammatory cytokines Il-1b, TNFa, Il-12, and

GM-CSF [10] as well as C–C chemokines such as

MCP-1, MIP-1 and RANTES [87,88]. Furthermore,

hsps induce DC maturation as determined by their up-

regulation of MHC class II and the co-stimulatory

molecules CD86 (B7-2) and CD40 [10,73], and

promote their accumulation in draining lymph node

in vivo [73,89]. Interaction of gp96 [10] with murine

DC or hsp70 with human monocytes [83–85] also

triggers translocation of NFkB, a key signaling

transduction pathway in immune responses. Evidence

of hsp-mediated stimulation of innate immune

responses also comes from antibody-depletion exper-

iments showing that NK cells are critical for protective

immunity to tumors [8]. Enhanced secretion of IL-12

following the interaction between hsp and APCs is a

likely explanation for this observation [5].

One primary concern about these immunomodula-

tory properties of hsp is that they could be due to trace

contaminants of bacterial lipopolyssaccharide (LPS),

a very potent inflammatory agent. Several lines of

evidence, however, argue against this possibility.

First, hsp70, hsp90, and gp96 that have been heat-

denatured completely lose their immunomodulatory

activity. Second, in contrast to LPS, gp96-mediated

activation of DC is strictly dependent on endocytosis

and, therefore, is impaired in the presence of the

endocytosis inhibitor MDC [82]. In contrast, hsp-

mediated activation of DC and macrophages is

unaffected by the LPS-inhibitors polymyxin B [83]

and the LPS-antagonist Rslp [10]. Third, highly

purified hsps, with an undetectable level of LPS

using the sensitive limulus amebocyte lysate assay,

remains fully active [10]. Fourth, hsp70, but not LPS,

induces a rapid intracellular calcium flux in mono-

cytes [84,85]. Further support of a bona fide

immunomodulatory ability of hsp comes from the

observation that transformed cells expressing recom-

binant gp96 targeted to the cell surface by the addition

of a transmembrane domain, induces efficient DC

maturation following cell-to-cell contact [90]. Finally,

the following recent preliminary data obtained in our

Xenopus system provides evolutionary validation of

the involvement of hsp in innate immune responses.

Injection of gp96, but not LPS, generates long lasting

(1 week) increased NK activity in adults frogs, as well

as the induction of IL-1b expression both in larvae

and adults (Robert et al., unpublished). These

observations further support the hypothesis of a true

involvement of hsp, rather than an LPS contaminant,

in innate immune responses. Xenopus B-cells are, in

fact, poorly responsive to LPS in vitro [91], and, the

intraperitoneal injection of 0.5 mg of LPS, which

would be lethal for a human or mice, is well tolerated

by Xenopus tadpoles and adults.

The stimulatory capacity of innate immune

responses by hsps in conjunction with their ability to

generate antigen-specific T-cell responses, has

important implications at the level of immune

surveillance. Several studies suggest that by virtue

of their abundance hsps are the major protein species

released in the extracellular compartment when cells

die by necrosis but not by apoptosis [10,92,93].

According to this view, hsps could constitute a

‘danger’ [94] signal of non-programmed cell death

such as viral infection or cancer [4].

5. Evolutionary study of hsp immunogenicity

in Xenopus

The experimental model we have developed in the

frog Xenopus is characterized by naturally MHC class
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I-deficient but immunocompetent larvae, T-cell-

deficient thymectomized animals, minor and major

histocompatibility-defined syngeneic cloned frogs,

and MHC classical class I-negative and positive

transplantable lymphoid tumor cell lines. Thus, we

can investigate the phylogenetic conservation of some

of the immunologically relevant features of hsps. The

immune system of adult Xenopus, a genus who last

shared a common ancestor with mammals ,350

million years ago [95], is fundamentally similar to that

of mammals (e.g. rearranging TCR and Ig genes,

MHC class I- and II-restricted T-cell recognition [96],

NK [97] and CD8 NK/T-cells [98] have been

characterized). Relative to mammalian systems,

however, the Xenopus model allows the study of

tumor immunity either in the presence or in the

complete absence of MHC class I molecules [99,100].

Although both larval and adult Xenopus are immuno-

competent and have CD8þ T-cells, larval cell-

mediated immunity cannot involve classical MHC

class I antigens since these molecules are not

expressed until metamorphosis [101,102]. In fact,

since neither classical class I, nor non-classical class

Ib, nor LMP7 mRNAs can be detected in the thymus

until metamorphosis [102], a strong case can be made

for the absence of class I education during larval life.

Spontaneously arising thymic lymphoid tumors in

Xenopus have been characterized, and transplantable

cell lines developed [103–105]. By taking advantage

of these tumors, we have shown that like mammals,

adult frogs can detect tumor-specific antigenic

determinants and generate an anti-tumor thymus-

dependent protective immunity [105,106]. Moreover,

the immune system of MHC class I-negative larvae is

also able to recognize (and develop a long-lived

memory against) tumor antigens. Nevertheless, the

larval immune system appears to lack a fully

operational effector system. Whether such ‘weakness’

is related to the absence of MHC class I surface

expression is unknown.

We have shown that Xenopus gp96 complexed in

vitro with exogenous antigenic peptides, can interact

with mouse macrophages, leading to the cross-re-

presentation of the antigenic peptide by class I

molecules of murine macrophages, and peptide-

specific activation of a MHC-restricted mouse CD8þ

T-cell line [47]. To obtain more evidence of the ability

of Hsps to generate MHC-restricted CD8 T-cell

mediated responses against chaperoned exogenous

antigenic peptides in absence of Xenopus MHC-

restricted antigen-specific T-cell clones or lines, we

took advantage of several minor histocompatibility

(H) alloantigen disparate Xenopus clones [48,100].

Both hsp70 and gp96 can generate a thymus-

dependent, adaptive, specific, cellular immune

response against chaperoned minor H antigenic

peptides that effects an accelerated rejection of

minor H-locus disparate skin grafts in vivo. Further-

more, hsp70 and gp96 immunization elicited a CTL in

vitro response specific against minor H-antigens. As

in the mouse, neither Xenopus peptide-free hsp70, nor

cognate gp96-peptide complexes elicit any CTL

activity. In addition, CTL generated by gp96 or

hsp70–peptide complexes kill only MHC-compatible

targets derived from the same minor H-locus-

disparate genotype as the frog clone from which the

Hsps were purified. This strongly suggests that the

CTL response has been generated against chaperoned

minor-H antigenic peptides, and that these exogenous

peptides have been channeled in the antigen presen-

tation pathway of the host. Thus the immunological

properties of gp96 and hsp70 extend beyond mam-

mals to ectothermic (cold-blooded) vertebrates like

Xenopus.

Immunization of Xenopus with gp96 purified from

a highly tumorigenic MHC class I negative 15/0

tumor generates potent anti-tumor immunity as

measured by a significant delay in the appearance

and diminished size of tumors after challenge [47].

Weaker but nevertheless reproducible reduction in the

size of tumors has been observed with gp96 from

normal tissues, suggesting that as in mammals, gp96

can generate anti-tumor responses in the frog that are

both peptide-specific (adaptive) and non-peptide-

specific (innate). This conclusion has been further

substantiated by the similar anti-tumor responses

obtained by priming with a purified Xenopus

hsp70–tumor peptide complex, and a more limited

effect (i.e. reduced tumor size) with tumor-derived

hsp70 that is free of peptide [47]. In the absence of

MHC class I expression by 15/0 tumors (both mRNA

and protein), the peptide-specific anti-tumor response

elicited by gp96 and hsp70 cannot be due to classical

MHC-restricted CTL response. Among other possible

effectors, we are focusing on NK cells, MHC-

unrestricted cytotoxic CD8þ T-cells, and the recently
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characterized NK/T-cells [98]. Since classical class Ib

[102,104] and b2-microglobulin mRNAs (Robert and

Horton, unpublished data) are detectable in 15/0

tumor cells, a non-classical class Ib restricted

response is possible.

Strikingly, gp96 is able to generate responses

against MHC class I-negative tumors in naturally

class I-deficient but immunocompetent larvae [48,

100]. In this case, however, the response does not

appear particularly dependent on the presence of

antigenic chaperoned peptide since immunization

with gp96 purified from normal tissue is just as

effective as tumor-derived gp96 in evoking inhibition

of tumor growth. In addition, immunization with

either tumor-derived or non-tumor-derived gp96

results in a significantly prolonged survival of

tadpoles challenged with a lethal tumor. Given the

absence of MHC class I antigens in pre-metamorphic

larvae, this suggests a prominent contribution of an

innate-type of response. The peptide non-specific

anti-tumor responses generated by non-tumor-derived

gp96 in naturally class I-deficient larvae further

suggests that the MHC class I re-presentation pathway

of exogenous hsp-chaperoned peptides is crucial for

eliciting a specific adaptive cellular immune response.

It is unclear whether hsp-mediated larval anti-tumor

responses involve cytotoxic effectors. A minor

population of NK cells can be detected in the spleen

of pre-metamorphic stages taploles in parallel with the

first detection some class Iþ splenocytes (Horton et al.,

submitted). However, no NK-like cytotoxicity could

be detected using a sensitive DNA fragmentation

JAM assay (Horton et al, submitted), even after

immunization with gp96 (Goyos and Robert, unpub-

lished).

6. Surface expression of hsps

One poorly understood aspect of the immunologi-

cal properties of hsp70 and gp96 concerns their

expression at the surface of certain cells. Surface

expression of hsp70 [107,108], BiP [109], hsp90 [107,

110] and gp96 [42,111] has been observed for a

variety of human and murine tumor cells, but not for

the limited number of transformed or normal cells that

have been examined (human EBV-transformed B-

cells, peripheral blood leukocytes, and fibroblasts). It

has been reported that the inducible form of hsp70

expressed on the cell surface of some tumors may

directly interact with gd-T-cells [108,112,113] and/or

NK-cells [9]. Gp96 also has been reported to be

expressed on the surface of some mouse tumor cells

but not on normal embryonic mouse fibroblasts [111],

despite the fact that the gp96 on the cell surface

contains an ER-retention KDEL sequence. Surface

expression of several ER-resident molecular chaper-

ones, including gp96, found on a subset of murine

immature thymocytes [114] as well as LPS-activated

B-cells [115], reveals that this phenomenon might be

not restricted to tumor cells.

We [116] have demonstrated that, as in mice [117],

a fraction of the Xenopus gp96 synthesized by

thymus-derived lymphoid tumor cells is actively and

specifically directed to the surface of these cells.

However, in contrast to mice, our observations have

also revealed that some normal Xenopus B-lympho-

cytes also express surface gp96, whereas we have

been unable to detect gp96 on the surface of normal

non-transformed Xenopus erythrocytes, splenic and

peritoneal macrophages, and fibroblasts. The C-

terminus of surface gp96 contains the KDEL motif

involved in the retention of resident protein by the

endoplasmic reticulum. Gp96 is tightly bound to the

plasma membrane of these cells, and the possibility of

its adventitious deposition from extracellular com-

partments has been ruled out for both Xenopus [116]

and mice [111]. It is unclear, however, how in absence

of a transmembrane domain, gp96 can be expressed at

the cell surface. The wide occurrence of this

phenomenon suggests a biological relevance. We

have found a similar surface expression on some, but

not all, T- and B-cell lines from the channel catfish as

well as lymphoid-like cells of the hagfish [115]. In

Xenopus as in fish and hagfish, gp96 is directed to the

surface by an active process dependent on transloca-

tion of protein from the ER to the Golgi (i.e. a

Brefeldin A-sensitive process). Most interestingly, we

have recently been able (Robert and Smith, unpub-

lished) to extend the restricted cell surface expression

of gp96 homologues to sea urchin. We have

characterized a rabbit anti-mouse gp96 polyclonal

anti-serum that specifically cross-reacts with gp96

from S. purpuratus by Western blotting (i.e. inhibition

by pre-incubation with purified mouse gp96).

Approximately 50% of freshly harvested coelomic
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phagocytes were brightly surface stained with anti-

gp96 mAb, whereas other coelomic cell types were

negatively stained. This surface signal was not due to

cell death as controlled for by propidium iodide.

Moreover, no surface signal was detected at the

surface of phagocytes with anti-C3 mAb that

intensely stains fixed cells.

Recent pulse/chase experiments with Xenopus

B-cells (Morales and Robert, unpublished data) suggest

that gp96 is constitutively directed to the surface of

lymphoid tumor cells and freshly harvested normal

B-cells by a process involving a rapid turnover (gp96

appears within 4–5 h at the surface, disappears after

1 h). A scant amount of labeled gp96 was detected in

the culture medium in parallel with its appearance at the

cell surface of B-cells suggesting a possible secretion,

although the rapid disappearance of the whole surface

gp96 signal may also involve an active re-internaliz-

ation. Interestingly, stimulation of Xenopus B-cells

with heat killed E. coli bacteria up-regulates gp96

mRNA and, intracellular and surface gp96 protein

(Morales et al., manuscript in preparation). Given the

dual ability of gp96 to chaperone antigenic peptides

and to stimulate innate immune responses, such gp96-

induced cellular modulations may play a role in

immune surveillance by allowing B-cells to access

and probe the extracellular milieu as well as to trigger

immune responses. In this regard, in vitro evidence in

mouse suggests that gp96 surface expression by B-cell

upon LPS-activation may function as a Th2-specific

co-stimulatory molecule [115]. Generally, increased

hsp surface expression by stressed, tumor, and

activated immune cells may constitute a way other

than necrosis to expose APC to hsps.

7. Possible role of hsp in the evolution of the

immune system

The capacity to control invasion by pathogens and

neoplastic cells is certainly a major selection pressure

for any organism. A strong positive selection for any

defense and immune surveillance mechanisms should

have been maintained throughout evolution leading to

multiple redundant systems. As already mentioned,

hsps are very ancient and conserved structures. The

receptors that mediate their internalization are also

likely to be ancient and conserved. For example,

highly conserved a2-M homologues are known in

most vertebrate taxa, and C. elegans [117], and CD91

receptor homologues are also likely to be well-

conserved. TLR homologues are also of ancient

origin [86,118]. Macrophage-like cells are also a

common ancestral-type of immune cells. Therefore, a

sensor system based on detecting hsps released in the

extracellular environment following stress and necro-

tic death could constitute the archetype of an ancestral

system of immune surveillance. In addition to

providing general inflammatory or danger signals

[94] that trigger innate immune responses, hsps would

have the potential, at least in mammals and frogs, of

generating specific adaptive immune responses

against the peptides they chaperone. Such a system

may be very ancient and may still be active in a wide

array of extant organisms. In addition, an early

specialization of certain hsps in immune surveillance

may have led to a subsequent diversification of their

functions and interactions. It is possible, for example,

that in different organisms, hsps interact with different

cell types and/or different receptors.

Based on the convergent ability of hsp and MHC

molecules to bind peptides, and their expression at the

cell surface, we [119] and others [43,120] have

hypothesized that hsps are part of an ancestral

pathway that is antecedent to, and independent of

the antigen presentation pathway that uses MHC

molecules. Specifically, we have proposed that the

surface expression of gp96 (and perhaps hsp70) may

have provided a primitive mechanism for presentation

of cell surface antigens. Interestingly, a potentially

analogous non-immunological system using surface

hsp70 has been proposed for the ascidian Ciona

intestinalis to prevent auto-fertilization of hermaph-

roditic animals [121].

Based on extensive molecular studies [122], the

evolution of the vertebrate adaptive immune system

appears to have occurred abruptly with the simul-

taneous emergence of all the different gene elements

in the ancestors of Gnathostomata (jawed fish).

Indeed, T-and B- lymphocyte receptors as well as

MHC class I and II genes have been identified in the

living representatives of all the classes of gnathos-

tomes whereas none have been found in agnathans

and prochordates despite repeated attempts to look for

them. Although the emergence of a functional

adaptive immune system may have resulted from
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an accelerated evolutionary rate, it is unlikely to

happen in a single step. In agreement with a strict

Darwinian viewpoint where production of phenotypic

diversity precedes natural selection, Du Pasquier and

Flajnik [122] proposed a scenario in which a primitive

repertoire of lymphocyte receptors, probably TCR-

like, was first generated by somatic rearrangement

(possibly as originally proposed by Marchalonis et al.

[123], as a result of a horizontal transfer of the

rearrangement machinery. The characterization of

transposon activity by Rag1 and 2 genes [124,125]

support this possibility. During the second step, MHC

genes evolved to select a more efficient lymphocyte

receptor repertoire and to avoid autoimmunity. It is

tempting to speculate that hsps served as a kind of

surrogate for the MHC during the period required for

the assembly of MHC genes.

There are some aspects of the immunological

properties of hsps that maybe relevant for applied

immunobiology (Table 1). Important efforts are

being made to control or prevent viral and bacterial

infections of economically important organisms (i.e.

fish, shrimp, etc.) by developing new treatment or

vaccines. Hsps have been shown to be potent in

generating specific anti-tumor, anti-viral and anti-

bacterial protective immunity in mammals. Among

the advantages of developing hsp-based vaccines is

that there is no need to identify and purify antigens

prior to therapy. The purification of hsp70 and gp96

(together with their bound peptides) from infected

tissues is relatively easy. Moreover, it is likely that

since purified hsps carry more than one antigenic

peptide, they would elicit an immune response

against multiple antigens. Given the success of

hsp–peptide immunization in mammals, hsp vacci-

nation may also be efficient in other vertebrate

species including fish and amphibians. In this regard,

accumulating evidence suggests that fungal (chytrid

fungus) and viral (iridoviruses) agents are implicated

in the worldwide declines of amphibian populations

and species [126,127]. Hsp-mediated vaccines,

especially against iridoviruses, may represent a

useful strategy to protect endangered captive (zoo)

amphibian specimens. In the case of invertebrates,

the possibility of enhancing innate immunity by hsp

stimulation merits serious evaluation.

Finally, hsp70, hsp90, and gp96 expression levels

may serve as useful biomarkers of the health of a

tissue or a cell population. Gp96 is up-regulated upon

any disturbance of the ER function; hsp70 and hsp90

are also up-regulated upon tissue injury and infection.

Hsp70 has been shown for example, to provide a

suitable biomarker of effect of pollutants on the

earthworm [128]. The increasing number of differen-

tial gene expression studies (i.e. micochips, proteo-

mics) in various invertebrate and vertebrates species

could provide potentially interesting background

information to look for correlation between hsps and

other immune-related gene expression.

In conclusion, the recent realization that hsps play

a key role in mammalian immunity, has implications

for evolutionary and comparative immunobiology

that should be thoroughly evaluated. Involvement of

hsps in immunity is likely to have emerged early and

diversified during evolution. It is my personal

conviction that more extensive comparative studies

will reveal novel and potentially unique features of

hsp–immune system interactions.

Acknowledgements

Research cited from the author’s laboratory was

supported by RO1 AI-44011 and CA-76312 from

Table 1

Immune-related characteristics of mammalian and amphibian Hsps

Hsp70 and gp96 Mammals Amphibian

Peptide binding þ þ

Peptide chaperoning þ þ
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Effectors

MHC-restricted CD8 T-cells þ þ
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Tumor immunity in absence

of class I presentation

? Yes

Surface expression

Tumors þ þ

IgMþ B-cell subset þ þ
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