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Abstract

The immune system is initiated and regulated through a process starting from the binding of antigenic peptides to major histocompatibility
complex (MHC) molecules. Detailed understanding of such interactions would lead to the development of vaccine design for infectious
diseases, and immunotherapies for autoimmune diseases and cancer. Since MHC class II genes are highly polymorphic, a computational
prediction tool for the first screening of antigenic peptides that bind to MHC class II molecules, is highly desirable. In the present study,
hidden Markov model (HMM) was applied for the screening of peptides that interact with nine MHC class II molecules, specifically, human
leukocyte antigen (HLA)-DR1, -DR2, -DR4, -DR7, -DR11, -DR15, -DR17, -DR51, and -DQ2. When high-binding peptides interacting
with each MHC molecule were subjected to the constructed HMM model, significantly high likelihood values were obtained, as compared
to the non-binding peptides as negative control. With the receiver-operating characteristic analysis for the prediction evaluation, our model
showed high prediction accuracy, with an average AUC value of 0.87 for all molecules. The HMM model that was trained by HLA-DQ2
showed significantly low likelihood values to peptides that bind to eight HLA-DR molecules. This suggests the high potency of our HMM
model for discriminating HLA-DQ binding peptides from HLA-DR binding peptides.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Adaptive immune system is a self-defense mechanism
against most microbial or viral invasions that have escaped
the innate immune system. The system targets infectious
invasion sources with proteins or peptides that originating
in the antigens, and then accomplishes the defense using
antibodies and killer cells[1,2].

Major histocompatibility complex (MHC) molecules are
peptide receptors that play a central role in the initiation
and regulation of T cell-mediated immune responses[1,2].
These immune processes involve the binding of peptides to
MHC molecules inside the antigen presenting cells (such
as B cells, macrophages, and dendric cells), the transport

Abbreviations: MHC, major histocompatibility complex; HLA, human
leukocyte antigen; HMM, hidden Markov model; SSS, successive state
splitting; ROC, receiver-operating characteristic; AUC, area under the
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of these complexes to the cell surface, and the presentation
for the recognition by T cells[2]. A peculiarity of MHC
genes is the extensive polymorphism, characterized by the
presence of hundreds of allelic variants. Each variant of
the MHC molecules binds with foreign and self-antigenic
peptides, in accordance with the specific binding motif,
thus mediating the individual differences in immune re-
sponses[1]. Immune response is initiated if the strength
of the interactions surpasses a certain threshold, regard-
less of the origin of the bound peptide (i.e. self-peptide or
non-self-peptide). Malfunctions, such as allergy or severe
autoimmune diseases, are also caused in a similar man-
ner. In a positive implication, an effective presentation of
cancer antigenic peptides should lead to immunological
therapy[3]. Therefore, detailed understanding of the inter-
action mechanisms that govern the binding and selection
of the peptides is essential for the development of vaccines
against infectious diseases and immunotherapies for allergy,
autoimmune diseases, and cancer[3,4].

MHC molecules are classified as MHC class I (HLA-A,
-B, and -C) and class II (HLA-DR, -DQ, and -DP). Class I
molecules accommodate peptides with a narrow distribution
in their lengths (8–11 residues[5]), and the bound peptides
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are recognized by cytotoxic T cells. The binding pockets
are known to accommodate nine anchoring amino acids as
the binding core-regions[6]. Based on such clear struc-
tural binding rules, peptides that can bind to a MHC class
I molecule are easily identified by searching the binding
core-region.

Class II molecules are encoded by genes in the subre-
gions, such as DR, DQ, and DP[1,2]. For example, MHC
molecules that are associated with the DR genes are des-
ignated as HLA-DR1. HLA-DQ molecules differ from
HLA-DR molecules in several aspects, such as high poly-
morphism in both the polypeptide chains that comprise the
MHC class II molecule, or its expression manner[7]. Class
II molecules bind with longer peptides than their class I
counterparts, as recognized by helper T cells. Since the spe-
cific hydrophobic residues that close the ends of the class I
peptide binding groove are absent, the length of the bound
peptides are unrestricted[8]. Accordingly, the peptides that
bind to class II molecules vary from 11 to 30 residues[2].
Although binding pockets are also observed in MHC class
II molecules[9], positional differences among the alleles
impose diverse constraints on the peptide sequences that
may bind to the class II molecule[10]. It was confirmed
that peptides with nine residues, involving several anchor
amino acids, bind to the class II molecule groove—however,
their immunogenic strengths vary greatly by the addition
of amino acids to either or both ends of the amino and
carboxyl termini[11]. With such wide distributions in the
lengths of the binding peptides, and differences in allele
specific binding pocket positions or the residues outside the
core-region, identification of MHC class II binding peptides
have proven to be a monumental task.

Several predictions of the antigenic peptides that bind to
several allelic MHC class II molecules have been attempted
with characteristic structures in peptide[12,13], and with
computational approaches including neural network[14],
evolutionary algorithm, and artificial neural network[15], it-
erative stepwise discriminant analysis meta-algorithm[16],
and fuzzy neural network[17]. Correlations were observed
between the binding strengths and the characteristics of
amino acids at certain positions, in which predictive scores
for the peptides were calculated from the quantitative ma-
trix showing preference of amino acids for each position in
the MHC-binding peptides[12,13]. Although computational
prediction approaches[14,15,17]have shown high predic-
tion accuracy, time-consuming experiments, usually made
only for few molecules, are still necessary in constructing a
quantitative matrix.

Investigations of peptides that strongly bind to MHC class
II molecules, which effectively regulate the immune re-
sponse, may result in a peptide vaccine against infectious
microorganisms, a cancer-targeting peptide for cancer im-
munotherapy, or a peptide drug for the autoimmune diseases.
To this end, bioinformatic tools can provide the methods for
the first screening in the exhaustive drug discovery of vari-
ous peptides that can interact with MHC class II molecules.

Since the variation of peptide sequences are enormous in an
exhaustive research, effective but simple screening tools that
require fewer experimental processes are highly desirable.
As an example, even with short peptides with four residues,
204 (=160,000) variants should be involved in an exhaustive
investigation for their activity.

Previously, we have demonstrated that the hidden Markov
model (HMM) can be effectively adapted for the bind-
ing prediction of peptides that interact with MHC class II
molecules, with the combination of successive state splitting
(SSS)[18]. HMM is a stochastic model, which is suitable
for representing time-series and biological sequences, and
has been widely used in the field of bioinformatics[19]. An
important feature of HMM is the flexibility that provides
the representation of peptide sequences of various lengths
within a single model, and accordingly, some binding se-
quence rules underlying the full length of binding peptides
are expected to be conserved in the training of the model.
In our previous work[18], a model (S-HMM) has showed
high prediction accuracy in the binding peptide predic-
tion of human MHC class II molecule, HLA-DR1. As a
continuation of our studies of the extensive polymorphic
MHC molecules, the universal predictive power of S-HMM
should be established, in addition to HLA-DR1. Herein,
we describe our investigations to establish the universal
predictive power of S-HMM using the binding peptide data
of the other eight MHC class II molecules (HLA-DR2,
-DR4, -DR7, -DR11, -DR15, -DR17, -DR51, and -DQ2).
The model structures are optimized, and the characteristics
of acquired models are presented.

2. Materials and methods

2.1. Peptide data

Peptide amino acid sequence data and their binding
strength to human MHC class II molecules were obtained
from the MHCPEP database (http://wehih.wehi.edu.au/
mhcpep/) [19]. From the database, 305 sequences (HLA-
DR1), 33 sequences (HLA-DR2), 127 sequences (HLA-
DR4), 34 sequences (HLA-DR7), 67 sequences (HLA-
DR11), 46 sequences (HLA-DR15), 33 sequences (HLA-
DR17), 39 sequences (HLA-DR51), and 46 sequences
(HLA-DQ2) were selected as high-binding peptides. The
peptide lengths in the resulting set ranged from 9- to
25-mer, and the peptide length distribution of all the allelic
molecules is shown inTable 1.

2.2. Hidden Markov model

The left-to-right HMM used in this study has basically
the same structure as described in our previous work[18];
however, for clarification, a brief explanation is given as
follows.

http://wehih.wehi.edu.au/mhcpep/
http://wehih.wehi.edu.au/mhcpep/
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Table 1
Peptide length distribution of high-binding peptides data to HLA allelic molecules

Peptide length (number of residues) Total

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

DR1 120 0 25 4 57 5 59 11 5 4 4 8 0 0 0 1 2 305
DR2 0 0 0 0 0 1 17 3 0 1 2 7 2 0 0 0 0 33
DR4 60 0 0 0 54 1 8 0 0 0 0 2 0 0 0 2 0 127
DR7 0 0 0 0 4 4 16 1 1 2 1 3 0 0 1 1 0 34
DR11 53 2 0 0 0 7 4 1 0 0 0 0 0 0 0 0 0 67
DR15 0 0 4 3 3 3 16 3 2 3 4 3 0 0 0 1 1 46
DR17 0 0 0 0 1 2 13 9 3 2 1 0 0 0 0 2 0 33
DR51 0 0 0 0 30 1 1 0 0 1 0 5 0 0 0 1 0 39
DQ2 0 21 4 1 2 5 2 6 1 1 0 2 0 0 0 1 0 46

HMMs are stochastic models that can model processes,
represented by sets of various sequence of symbols. The
sequences of symbols typically represent protein, DNA, or
RNA sequences in the bioinformatic field. HMM is known
to encode properties of the sequences in various lengths
within the same class. In the basic HMM[20], the model is
represented by a finite set of nodes called “states,” and arcs
connecting the states. Every state is associated with outputs
(in the present case, the amino acid character) to be gener-
ated according to the involving probability named symbol
generating probabilty in this work. Every arc showing the
transition from a state to the next state is governed by a set
of probabilities called transition probabilities.

An example of left-to-right HMM used in the present
study is shown inFig. 1. The HMM consists of linear
lined states connected with arcs in one direction. The start-
ing and the finishing states do not emit any amino acid.
A sequence of observations (a peptide sequence) and the
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Fig. 1. An example of left-to-right HMM using the training data consisting of five peptide sequences with differing lengths. Symbols: T, threonine; K,
lysine; H, histidine; Q, glutamine; normal arrows, transition probability; open arrows, symbol generation probability.

probability of generating such sequence from the model can
be calculated as follows: in Fig. 1, five peptides of various
lengths, with partially similar amino acid sequences (TKH,
TKQQQ, TKQHHQHQHQQ, TKHQQQQQQHHHQHH,
and TKHHHHHHH HHHQHHHHHHHHHHQHQ), were
modeled by one simple structure using HMM. All five pep-
tides have identical amino acids in the first (T: threonine)
and second (K: lysine) positions. Starting from the third
position, the peptides consist of either H (histidine) or Q
(glutamine), with different orders and repeated times. The
amino acid distribution from the third position can be ex-
pressed by only one state, which is state 3 in the model.
State 3 may represent 50 amino acids with the distribution
of H and Q symbols (H = 32, Q = 18), and the symbol
generation probabilities can be given as 32/50 = 0.64 (H)
and 18/50 = 0.36 (Q). To express the length distribution of
the sequences, the use of state 3, repetitively utilized for a
total of 30 times, may allow the model to represent all the
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different sequence lengths. For example, the sequence
TKQHHQHQHQQ uses the state 3 twice, repeatedly, from
the 4th to the 5th amino acid, and from the 10th to the 11th.
Transition probability, indicating the repeated numbers of
state usage, may be given to the self-loop arc as 30/50 =
0.60, and accordingly as 1.0–0.60 = 0.40 to the remaining
arc. With these probabilities for the states and arcs, the fit-
ness of the unknown sequence (TKHHH) to the model can
be calculated as a likelihood value, which is 1.0×1.0×1.0×
1.0×1.0×0.64×0.60×0.64×0.60×0.64×0.40 = 0.038.

Model training was carried out using the Viterbi algorithm
[21], an unsupervised learning algorithm. Baum–Welch al-
gorithm is another learning algorithm commonly used in
HMM. Baum–Welch algorithm utilizes more parameters
than the Viterbi algorithm for the learning process, which
takes more time for its processing, and may involve a local
maximum problem depending on the initial estimate of the
parameters [22]. Therefore, Baum–Welch algorithm was
not used in our model. In the Viterbi algorithm, only the
best path with the highest possibility for each sequence is
searched and used for the parameter setting during learn-
ing. The lone use of the best path provides for a quicker
learning process by not using excessive parameters, while
maintaining reasonable recognition accuracy.

2.3. Successive state splitting

One of the fundamental problems of HMM is the
time-consuming process for the search of an optimal struc-
ture for the analysis data. To overcome this problem, we
applied the SSS algorithm [23] to estimate an optimal struc-
ture of left-to-right HMMs [18]. The basic SSS strategy is
to grow the model structure with only one state, from the
initial to the final model, with required numbers of states
by splitting the state to either parallel or serial direction.
The state with maximum Shannon’s information entropy
[24], indicating the worst characteristic state, which may
not represent any feature of the training data, was selected
in every splitting step. Furthermore, for each splitting pro-
cess, every available splitting direction was tried, and the
direction that exhibited the highest likelihood values to all
the applied sequences was employed.

If every state holds equal distribution of symbol gener-
ating probabilities, such model would represent any ran-
dom sequences with its unrestricted expression ability. The
SSS method will save the distinctive states with characteris-
tic symbol generating probability distribution, whereas the
non-characteristic states (those with highest entropy) will be
targeted for splitting to conserve features underlying in the
training data for better prediction model [18].

2.4. Binding prediction scheme

As shown in Fig. 2, the prediction scheme is divided into
two steps. First, the prediction model structure is constructed
using all data sequences. In the present study, unsupervised

learning, which only utilizes high binders sequence data,
was used in the construction of the prediction model. In this
model construction step, the appropriate prediction model
structure was searched by the SSS method.

Secondly, the peptide sequences in the training dataset
were applied to the final prediction model for the learning
process to rewrite the parameters in the model. After the
learning, each peptide in the test dataset was applied to the
model to obtain its likelihood value. The likelihood value
indicates the fitness of the peptide sequence to the bind-
ing tendency in the prediction model conserved through the
learning process. Peptides with higher likelihood value in-
dicate higher probabilities of binding to the MHC class II
molecule.

2.5. Evaluation of the prediction

As mentioned above, the output of an HMM model is
the likelihood value of the peptide tested. Since the absolute
value of binding strength cannot be obtained, the peptides
tested are compared by means of relative values of likeli-
hood. Peptide that have high likelihood value, relative to that
of non-binding peptide, is differentiated from non-binding
peptide, and is regarded as a binding peptide. From the
feature of HMM, the prediction accuracy of the S-HMM
was evaluated using receiver-operating characteristic (ROC)
analysis [25].

In ROC analysis, the ROC curve is obtained by plot-
ting true-positive proportion [true-positives/(true-positives
+ false-negatives)] against false-positive proportion
[false-positives/(true-negatives + false-positives)] for vari-
ous classification thresholds. High-binding and non-binding
peptides are designated as positive and negative, respec-
tively. For evaluation of prediction accuracy, the value of
area under the ROC curve (AUC) is used as the measure
of the predictive performance. An AUC value of 1.0 cor-
responds to a perfect prediction whereas 0.5 corresponds
to prediction by random guessing; empirically, AUC > 0.9
indicates excellent prediction and AUC < 0.7 indicates
poor prediction. We considered an AUC value of 0.8 as the
threshold for useful predictions. These AUC values provide
a universal basis for comparisons among different prediction
approaches. To obtain the AUC values, 473 non-binding
peptide sequences to HLA-DR1 (Dr. V. Brusic, personal
communication) were used as the presumably non-binding
data for all the molecules. In the prediction of the discrim-
ination for binding peptides to different allelic molecules,
as discussed in Section 3.3, sequences of all peptides that
are highly binding to the MHC class II molecule, except
the data used for the prediction model construction, were
applied in place of the non-binding data.

To evaluate prediction performance using AUC values,
threefold (for HLA-DR2, -DR7, -DR17, and -DR51), four-
fold (for HLA-DR11, -DR15, and -DQ2), and fivefold (for
HLA-DR1 and -DR4) cross validations were performed, de-
pending on the size of the data (Table 2). For example, for
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Fig. 2. Schematic diagram of the prediction scheme of S-HMM. In the model construction step, from the initial to the final model using all the peptide
data, the optimal prediction structure is automatically searched by SSS (A). In the evaluation step, the likelihood value for each test data is obtained (B).
After the model construction, the training dataset is first applied to the final model to rewrite all the parameters reflecting the data. Test dataset is then
applied to the model to obtain the likelihood value for every data.

threefold cross validation, the initial peptide data were di-
vided into three subsets such that the distribution of the
lengths of binding peptides were uniform in each subsets.
Initially, two subsets (nos. 2 and 3) were used as training
data, while the remaining subset (no. 1) was applied as test
data for the likelihood calculation. Next, subsets nos. 1 and
3 were used as training data, while subset no. 2 was applied
as test data. In the same manner, learning and test were car-
ried out using each subset to obtain the AUC values. The
average of the AUC values calculated for the cross valida-
tion sets was used for the evaluation.

Table 2
Cross validation results for all the HLA allelic molecules predicted with 15 states model

DR1 (305)a DR4 (127)a DR11 (67)a DR15 (46)a DQ2 (46)a DR2 (33)a DR7 (34)a DR17 (33)a DR51 (39)a

Dataset 1b 0.82 0.76 0.90 0.85 1.00 0.89 0.88 0.91 0.84
Dataset 2 0.83 0.83 0.91 0.92 0.91 0.85 0.87 0.85 0.88
Dataset 3 0.82 0.88 0.91 0.79 0.92 0.89 0.82 0.94 0.84
Dataset 4 0.83 0.87 0.93 0.85 100 – – – –
Dataset 5 0.83 0.85 – – – – – – –

Average 0.83 0.84 0.91 0.86 0.96 0.88 0.86 0.90 0.85

a The values in parentheses are numbers of peptides selected from the database.
b Each data set consists of training data and test data. DR1 and DR4 were divided into five datasets because there were sufficient peptides; DR11,

DR15, and DQ2 were divided into four datasets; the remaining data were divided into three datasets.

3. Results and discussions

3.1. Features revealing the simplicity of S-HMM prediction

We have shown that the prediction procedure of S-HMM
can be completed using two simple steps—prediction model
construction and test data evaluation by the likelihood value,
as shown in Fig. 2. In the unsupervised learning manner
of S-HMM, only the sequences for all binding peptides are
required for the prediction, and both quantitative matrixes
generated by additional experiments after the binding assays
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Fig. 3. Comparison of average AUC values from ROC analysis for nine HLA allelic molecules. State number of 15 was used for the prediction.

or the following core-region assumption using the matrix
are not required [14,15,17].

The SSS method can construct the prediction model fully
automatically, and furthermore, the entire predicting proce-
dure could be calculated within 5 min, even with 1000 pep-
tide sequences, by means of a Pentium III 1 GHz personal
computer. Upon the test data evaluation, peptides exhibiting
higher likelihood values could be chosen as candidates for
further biological assays in the investigations of the actual
immune regulatory activity.

3.2. Universal prediction ability of S-HMM

From the ROC analysis, S-HMM showed an average AUC
value of 0.87 among the nine different HLA molecules
(Fig. 3). Seven prediction models for HLA molecules ex-
hibited high prediction accuracy exceeding AUC value of
0.85. Of note, HLA-DR11 and -DQ2 showed excellent pre-
diction with high average AUC values of 0.91 and 0.96, re-
spectively. To the best of our knowledge, such high AUC
values among wide range of MHC class II molecules have
not been reported to date. These results imply the universal
flexibility and ability of S-HMM toward the screening of
peptides interacting with MHC class II molecules.

As shown in Fig. 4, the ROC curves of HLA-DR4, -DR11,
and -DQ2 were selected as good examples that show nor-
mal, better, and excellent prediction ability, respectively. If
the model is perfect, the ROC curve is represented by a
left vertical and an upper horizontal axes; in contrast, if the
model lacks predictive ability, the ROC curve resembles a
diagonal line. As shown in the cross validation results for
all MHC class II molecules (Table 2), the AUC values of
prediction accuracy were almost identical for each dataset.
These results suggest that the database was evenly divided
which indicated an equal distribution of peptide lengths. Al-
though our prediction accuracy did not exceed the reported
results for HLA-DR1 (AUC = 0.91) [26] and HLA-DR4
(AUC = 0.94) [17], the average AUC value of all nine
MHC class II molecules (AUC = 0.87) was considerably
high. Such universal high AUC values indicate the high

predictive potential of S-HMM for other MHC class II al-
lelic molecules. Furthermore, it is important to note that the
HLA-DR11 (AUC = 0.91) and HLA-DQ2 (AUC = 0.96)
models showed high AUC values against the other datasets.
Considering the simple prediction scheme with features of
S-HMM, the resulting above-average AUC values prove that
the S-HMM is a useful and universal tool.

In the previous work, the prediction model for HLA-DR1
was constructed using S-HMM fixed with 20 states [18]. To
obtain the universal prediction model that can show higher
accuracy in all MHC class II molecules, the effects of dif-
ferent state numbers on prediction accuracy were examined
(Table 3). State number 15 exhibited the highest average
AUC value among the nine MHC class II molecules. The
AUC values of HLA-DR7 and -DR15, which lack peptide
sequences longer than 20-mer, significantly decreased in
prediction models with 20 or 25 states. Such decreases in
the prediction ability with larger state number are caused
by short peptides, which cannot fit in the long model
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Fig. 4. Some examples of ROC curves obtained from the S-HMM pre-
diction on HLA-DR4, -DR11, and -DQ2. Dotted line, HLA-DR4; broken
line, HLA-DR11; solid line, HLA-DQ2.
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Table 3
Effect of state number on average AUC value in the prediction of S-HMM

State
number

DR1 (305)a DR2 (33)a DR4 (127)a DR7 (34)a DR11 (67)a DR15 (46)a DR17 (33)a DR51 (39)a DQ2 (46)a Average
AUC value

5 0.79 0.67 0.85 0.75 0.95 0.86 0.78 0.77 0.91 0.82
10 0.82 0.71 0.84 0.84 0.93 0.93 0.88 0.80 0.96 0.86
15 0.83 0.88 0.84 0.86 0.91 0.86 0.90 0.85 0.96 0.87
20 0.84 0.84 0.86 0.73 0.94 0.57 0.92 0.89 0.97 0.84
25 0.83 0.85 0.85 0.86 0.95 0.50 0.87 0.87 0.93 0.84

a The values in parentheses are number of peptides selected from the database.

structure, and result with failure in likelihood calculations.
All molecules, except HLA-DR11, showed a decrease in
average AUC values in models with state numbers that are
less than 10. The decrease of prediction ability with smaller
state numbers may be caused by poor specificity, in which
the model gives high likelihood values for any sequences,
even if non-binding peptide was used. The AUC values
of HLA-DR11 and -DQ2 were significantly high, even
with different state numbers. In the databases of these two
molecules, most of peptides were short peptides (Table 1).
A model constructed by such database may possess spe-
cific recognition potency. These results have shown that the
optimal model state number depends on the distribution of
peptide lengths in the objective database, and suggest that
the 15-state model functions universally for other MHC
class II molecules.

3.3. Discriminative prediction of allelic differences of
binding peptides using S-HMM

For the effective screening of peptides that bind to poly-
morphic molecule, such as MHC class II molecules, the pre-

Table 4
Average AUC values in the prediction models using high-binding peptides to other HLA molecules that are assumed as non-binding peptides to the
model molecule

Data used as the training data for the construction of the prediction model Average AUC
value among
the modelsDR1

(305)a
DR2
(33)a

DR4
(127)a

DR7
(34)a

DR11
(67)a

DR15
(46)a

DR17
(33)a

DR51
(39)a

DQ2
(46)a

High-binding peptides as test data
DR1 (305)a – 0.86 0.55 0.85 0.69 0.81 0.87 0.83 0.94 0.80b

DR2 (33)a 0.62 – 0.61 0.49 0.81 0.77 0.51 0.74 0.85 0.67
DR4 (127)a 0.61 0.93 – 0.78 0.86 0.83 0.87 0.74 0.92 0.82
DR7 (34)a 0.61 0.48 0.59 – 0.76 0.76 0.51 0.42 0.85 0.62
DR11 (67)a 0.44 0.86 0.50 0.87 – 0.86 0.91 0.86 0.92 0.78
DR15 (46)a 0.62 0.73 0.63 0.78 0.82 – 0.87 0.67 0.88 0.75
DR17 (33)a 0.62 0.53 0.61 0.54 0.81 0.76 – 0.73 0.83 0.68
DR51 (39)a 0.61 0.83 0.47 0.64 0.79 0.68 0.75 – 0.77 0.69
DQ2 (46)a 0.63 0.84 0.60 0.85 0.82 0.85 0.86 0.84 – 0.79

Average AUC value among
the HLA molecules

0.60c 0.76 0.57 0.72 0.80 0.79 0.77 0.73 0.87

a The values in parentheses are number of peptides selected from the database.
b All average AUC values indicate the average prediction accuracy among the models constructed by different HLA molecules. For the average

calculation, the self-AUC value is excluded.
c All average AUC values indicate the average prediction accuracy among the HLA molecules. For the average calculation, the self-AUC value is

excluded.

diction model should discriminate, not only binding from
non-binding peptides, but also peptides that bind to the ob-
jective allelic molecules from those that bind to other MHC
class II molecules. We have carried out studies to examine
the latter discriminative recognition ability of S-HMM. To
discriminate the S-HMM model for certain allelic molecules,
the sequences of high-binding peptides to different HLA
molecules were inputted as negative data. For example, af-
ter the prediction model is constructed and trained with the
binding peptide data of HLA-DR1, the sequences of all bind-
ing peptides to HLA-DR2, -DR4, -DR7, -DR11, -DR15,
-DR17, -DR51, and -DQ2 were applied individually as neg-
ative data. Therefore, the high AUC values can be regarded
as “ the easiness of discriminating two groups of binding
peptides.”

As shown in Table 4, five models constructed by different
HLA-DR molecules (DR2, DR7, DR15, DR17, and DR51)
showed high AUC values in the discriminative prediction
between self-binding peptides and DR11-binding peptides.
This result indicates that peptides which bind to DR11
were regarded as significantly different from those of five
DR molecules. However, a clear tendency to discriminate
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differences among other HLA-DR molecules was not
observed.

In contrast, the model constructed for HLA-DQ2 binding
peptide data showed significantly high AUC values, which
exceeded 0.85 against six HLA-DR molecules (HLA-DR1,
-DR2, -DR4, -DR7, -DR11, and -DR15). Additionally,
AUC values greater than 0.82 were obtained in the pre-
dictions discriminating the peptides that specifically bind
to HLA-DQ2 molecules using six prediction models con-
structed by peptides highly binding to different HLA-DR
molecules (HLA-DR2, -DR7, -DR11, -DR15, -DR17, and
-DR51). These results suggest the clear differences in
the binding factors between the peptides that bind to the
HLA-DR molecules and those that bind to the HLA-DQ
molecules. On the other hand, HLA-DR1 and -DR4 mod-
els did not exhibit any discriminative prediction ability
for the HLA-DQ2 binding peptides. These observations
may indicate the wider acceptance of binding peptides in
HLA-DR1 and -DR4 molecules as compared to the other
DR molecules. Since the allelic genes belong to a different
locus, and the HLA-DR and -DQ molecules show different
response on immune diseases, the likelihood differences
as revealed by our prediction result is reasonable. There-
fore, the possibility of discriminative prediction of binding
peptides to different allelic loci by S-HMM, with the use
of several models trained by different molecules, was sug-
gested. Such discriminative prediction feature of S-HMM
can greatly contribute to the first screening process in se-
lecting appropriate candidates for the objective MHC class
II molecule.

3.4. Information from the model structure of S-HMM

Fig. 5 shows the structure of the actual prediction model
for HLA-DR4 that was obtained from S-HMM. Arcs that
connect every state are designated with the transition prob-
abilities, in which an arc with a higher transition probabil-
ity is used more frequently, reflecting the training data. The
shortest path to the finishing state (state 1 → state 6 →
state 11 → state 8 → state 3 → state 4 → state 10 →
state 12 → state 9) involving nine states was connected by
highly used arcs. This corresponds to the data distribution of
HLA-DR4, which contain 47% of 9-mer peptides (Table 1).

The amino acid distribution in each state is also shown as
the symbol generating probability in Fig. 5. Tracing the path
as mentioned above, the 9-mer binding motif AYAAAAT-
SLA can be assumed by reading the amino acids that are
indicated by the highest probability (i.e. symbol genera-
tion probability). This motif is frequently extracted from the
binding peptides by the model training process. The motif
sequence should be regarded as an important binding factor
in affecting the binding strength, by partially accommodated
in the groove or from outside the groove of the MHC class
II molecule. In the S-HMM training which utilizes the en-
tire length of variable sequences for the model training, the
overall character of the peptides can be conserved.

In the model structure, the path with significantly high
transition probabilities (exceeding 0.84) can be regarded as
the shorter motif, commonly existing in the data sequences.
The path starting from state 6 to 8 (state 6 → state 11 →
state 8) are designated with high transition probabilities on
the arcs; furthermore, states 6 and 11 do not possess self-loop
transitions. In all three states, the tendency of amino acid
usage (i.e. symbol generating probability over 0.20) is clear,
and accordingly, for this path, binding motif sequences of
YAA and RAA can be assumed. However, such motif is not
a solid sequence motif of a 3-mer, since state 8, which rep-
resents the third amino acid, has a self-loop transition with a
probability of 0.51. With this self-loop state, the 3-mer motif
may show different lengths through the addition of another
amino acid, which would most likely be an A (alanine) for
its higher probability in state 8. However, it is important to
restate that such short motif is not defined to be associating
with the binding groove, but effects in the binding strength
as a result.

3.5. Comparison of prediction of S-HMM with other
methods

In previous reports, high prediction accuracies have been
reported by using the quantitative matrix itself [12,13], or
by using core-region affinity-scores calculated from the
quantitative matrix in computational approaches [14,15,17].
However, for prediction methods that utilize quantitative
matrixes, time-consuming experimental processes, such as
peptide synthesis, purifications of MHC class II molecules
or synthesized peptides, mass spectroscopy, Edman degra-
dation, and other processes, were indispensable in ob-
taining the quantitative matrix [2,27]. In our prediction
S-HMM method, only the sequence of peptide data is re-
quired for the prediction, and thus quantitative matrixes are
unnecessary.

Beside the use of the matrix, both binding and non-binding
data for the model construction are also required to at-
tain high accuracy of the prediction methods [14,15,17].
Although binding peptide data exists in several databases
that is available on the Internet, peptide sequences that are
confirmed as non-binding rarely exist, even in huge and
well-assembled databases, such as MHCPEP [19]. There-
fore, the unsupervised learning manner of S-HMM, which
does not require non-binding peptides, should be an impor-
tant feature to facilitate effective research work using avail-
able data on the Internet. In summary, S-HMM has overcome
two major shortcomings of prediction methods reported to
date, in allowing high prediction accuracy with its unsuper-
vised learning method.

3.6. Overall potential of the prediction using S-HMM

In the present work herein, binding peptide data from
nine MHC class II molecules were applied to construct the
prediction model. S-HMM has predicted all the molecules
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Fig. 5. The actual prediction model structure obtained from S-HMM. In this case, the model is the HLA-DR4 prediction model. Each symbol generating
probability distribution is shown as the table above/below the corresponding state. Underlined number in the table highlights the biased generating
probability over 0.20. The number associated with each arc is the transition probability.

with high accuracy, with average AUC values exceed-
ing 0.85 when the state number is properly set to 15.
S-HMM also showed high accuracy for the discrimina-
tion between peptides binding to certain MHC class II
molecules from those binding to the other molecules. In
the discrimination between HLA-DQ2 and -DR molecule
binding peptides, S-HMM showed an average AUC value
of 0.87.

We have shown both the simplicity and the potential
of our S-HMM as a first screening tool for polymorphic
molecules with unclear binding rule, by demonstrating
high prediction accuracy using nine different MHC class II
molecules, and the discriminative potency of allelic bind-
ing difference. In addition to showing universally high
prediction accuracy that is comparable to other prediction
approaches [17,26], S-HMM has also revealed the great
simplicity and application of its prediction scheme. There-
fore, it is strongly expected that S-HMM can be utilized
for its use in actual research work on other MHC class II
molecules.
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