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Large-scale parallel measurements of the expression of many thousands genes are now available with high-
density array made with collections of cDNA fragments, or oligonucleotide corresponding to different
transcripts. These technologies have been applied to cancer investigations since the availability of such a
large number of markers makes DNA array a powerful diagnostic tool for tumour and patient classification.
Over the last two years, a series of computational tools have been developed for the analysis of different
aspects of gene profiling. Our work tries to compare a series of supervised statistical techniques on the basis
of their ability to correctly classify different types of tumours. A simulation approach was initially used to
control the huge source of variation among and between patients, and to evaluate the ability of algorithms to
classify tumours in relation to different types of experimental variables. Different techniques for reduction of
data dimension were then added to the discriminant analysis and compared according to their ability to
capture the main genetic information. The simulation results have been tested by applying the selected
classification algorithms to two experimental microarray datasets of human cancers, and by measuring the
correspondent rates of misclassification. Our analyses identify in these datasets a series of genes principally
involved in tumour characterization. The functional role of these discriminant transcripts is discussed.

INTRODUCTION

A variety of molecular, clinical and morphological parameters
are currently used to distinguish and classify human neoplasia
and affected patients into discrete classes for a more accurate
diagnosis and treatment. These parameters are derived from a
series of established histological, immunological and biochem-
ical techniques for tumour analysis. Despite the advancement
of these technologies and the enhancement of their level of
detection, the sensitivity and degree of prediction of cancer
evolution need further improvements. The recent experimental
technologies based on DNA arrays offer the possibility to study
the expression levels of thousands of genes simultaneously (1).
With this approach it will be possible to discover hundreds of
novel molecular markers that can lead to a finer definition of
tumour diversity (2). A careful analysis of the gene expression
patterns through different diagnostic situations may help to
classify patients into the correct tumour category and/or to

detect new tumour stratifications. This is extremely important
because neoplasias that are traditionally classified into homo-
geneous groups, often evolve into diverse clinical outcomes,
and respond differently to pharmacological treatments. Global
gene expression studies can lead to the definition of the
molecular diversity underlying such phenomena, discovering
marker genes whose under- or over-expression could be
connected to novel traits in apparently uniform classes of
tumours.

Several studies have already shown how DNA arrays can be
effectively applied to distinguish different types of tumours
according to their gene expression patterns (3–6). In spite of
these recent progresses, many uncertainties still remain in
cancer diagnosis. There are more than a hundred types of
tumour (7) and, potentially, each type might be further divided
into subtypes. In this context, the statistical methodologies used
for classification become of crucial importance to recognize
differences in the molecular structure between pathological
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samples and controls, and among series of cases belonging to
the same diagnosed cancer type.

Different statistical methodologies may be used for the
analysis of DNA array data for various aspects of cancer
classification. The identification of new tumour types has been
improved using unsupervised statistical techniques, such as
cluster analysis (8,9). Prediction and categorization of cancer
types into known classes have become possible thank to
supervised methodologies such as discriminant analysis
(3,10–14). However, supervised techniques should be consid-
ered as the final step after an accurate statistical analysis for
tumour class definition. The accuracy of prediction algorithms
is in fact highly influenced by the precision with which
different tumour classes have been recognized and categorized.
Finally, variable selection, also known as gene scoring, can be
used either to identify putative genes whose expression pattern
is highly related to specific tumour types, or to reduce the
dimensionality of the data. In fact, it is well known that the
performance of a given decision rule does not keep improving
as the dimension of the features (genes) increases (15). Better
discriminant results may be obtained if a feature vector of
substantially lower dimension is used. Recently, many gene-
scoring methodologies have been proposed (16–19). They may
be divided into methods of single gene selection and methods
of factors construction based on the generation of linear
combinations of the original variables.

Clearly, not all the different types of discriminant analyses
perform equally. A comparison of some statistical discriminant
techniques based on the use of published expression datasets
has been proposed (20). This study revealed that the traditional
linear classifiers, like the diagonalized linear discriminant and
the nearest-neighbour methodologies, perform better than more
sophisticated processes such as the aggregated classification
tree. Moreover, the actual performance of a given statistical
approach for DNA array data analysis can be strongly affected
by the structural variables of the experimental system
approached (e.g. number of patients, gene expression patterns,
or number of different cancer classes) and by the techniques
used for features reduction. The influence of experimental
variables and of dimension reduction techniques on classifica-
tion results can be effectively controlled through a simulation
approach.

The intention of our work was the assessment of the
performance variability of various discriminant analyses in
relation to: (i) different experimental variables to which the
DNA array technology is applied for cancer classification; and
(ii) the influence of different systems for decrease of data
dimension. We have challenged six different classification
algorithms that have been applied recently for the interpretation
of cancer cDNA array data, and four different techniques for
reduction of data dimension. We have tried to determine which
statistical algorithms give the best performance in various
experimental situations. Our simulation approach is based on
the generation of several expression matrices that are
representative of many different experimental conditions.
Discriminant algorithms were applied to each of these
simulated situations, and their behaviour was compared
through error rates obtained with 10-fold cross validation. We
found that partial least square (PLS) analysis highly increases
the classification performance of all methodologies. In

particular, with the aid of the PLS reduction, the neural
network (NNET) is the algorithm that performs better when
dealing with a small number of patients per tumour class, while
the diagonalized linear discriminant analysis (LDA) performs
better with a large number of tumour classes. We show that all
the methodologies have comparable performances when the
number of patients per tumour is greater than 50, the number of
tumours is lower than four and the number of discriminating
genes is larger than 40.

Our analyses have been applied, and the results can be
referred to expression data obtained with microarray platforms
made with the ‘deposition’ technology, which is the most
common platform used in the scientific literature. This means
that amplified cDNA inserts or synthetic oligonucleotides of
different lengths corresponding to specific transcripts are
arrayed at high density on glass slides. The Affimetrix DNA
silicon chip (21), the second most used platform for expression
studies, relies on the synthesis of a parallel series of matched
and mismatched short oligonucleotides for each transcript
directly into the silicon chip. The gene expression values
obtained with Affimetrix platform are usually calculated as the
average difference of the matched and mismatched intensities.
Using average differences rather than ratio intensities, it is
possible to obtain negative expression values. Since our
simulation approach is based on random generation from a
gamma distribution (a probability density function suitable
only for positive variables), at the moment we have decided to
focus our comparison to ‘deposition’ array data. We are,
however, developing a similar approach to be applied
particularly to expression data obtained with Affimetrix
platforms.

The results obtained with the six selected classification
algorithms using the simulation approach were tested using two
published cDNA microarray datasets: the round blue cell tumours
dataset (3) and the National Cancer Institute dataset (4,5).
Exploiting the PLS factors obtained with dimension reduction
techniques (22,23), we also obtained from these expression
datasets lists of genes (associated with their functions) that are
putatively responsible of tumour discrimination.

Supplementary Material about simulation approach and
statistical results is available at http://muscle.cribi.unipd.it/
microarrays/simulation/.

RESULTS

We have compared the performances of six supervised learning
machines on simulated and experimental datasets of gene
expression profiling. The classification algorithms were chosen
from those recently proposed and applied in scientific literature
for the interpretation of cancer gene expression profiling data
obtained with DNA array. They are: the diagonalized linear
discriminant analysis (LDA); the neural networks (NNET); the
recursive partitioning (RPART); the support vector machine
(SVM); the nearest-neighbour method (NN); and the prediction
analysis for microarray data developed at Stanford University
(PAM). NNET has allowed the distinction between different
types of round blue cell tumour (3). SVM was initially used for
the detection of functionally related groups of genes in
Saccharomyces cerevisiae (13), and then for the classification
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of different cancer types (14). RPART analysis succeeded in
detecting three genes highly related to colon cancer (11) and
LDA was applied to the same colon gene dataset for tumour
classification (12). Finally, the PAM methodology has been
very recently employed for gene expression analysis in the
small round blue cell lymphoma and in leukaemia (19). In
addition, the performance of these algorithms has been
evaluated considering four different techniques for reduction
of data dimension. They are: the principal component analysis
(24); the partial least squared analysis (25); the gene selec-
tion processes proposed in the PAM methodology (19) and
in the GA/KNN technique (17). The performance of the
classification techniques has been evaluated according to the
percentage of misclassification by cross-validation; the lower
the misclassification the better the methodology.

Robustness

We tested the robustness of the selected supervised technolo-
gies by fixing a train set of gene expression data equal to a
simulated matrix with degree of confusion (CP, see Materials
and Methods) of 0.5%, and then evaluating the variation of the
misclassification rate on test sets with a progressively
increasing degree of confusion. Figure 1 shows the results of
these tests. In this analysis the misclassification rate increases
up to 100% because we used matrices of data with CP greater
than 50%. Actually, when the CP exceeds this threshold, the
expression values of the tumour-specific upregulated genes
became lower than those of the background genes, overturning
the perfect classification state (see Supplementary Material for
details). Our results show that SVM and NN are uniformly the
most robust methods while NNET and RPART have the highest
misclassification rate. LDA seems to perform at an intermediate
level.

Effects of methodologies for reduction of data
dimension

Next, we have examined the performances of the selected
supervised technologies after the application of some meth-
odologies for the reduction of data dimension. In particular, we
have considered the principal component analysis (PC), the
partial least squared analysis (PLS), the shrunken centroid
technique of PAM, and the GA/KNN technique based on
genetic algorithm and k-nearest neighbour (17). Figure 2
reports the most interesting results of this analysis (complete
results are available in the Supplementary Material). In
Figure 2A we compare the misclassification values obtained
by the statistical methodologies when applied to 15 different
matrices with increasing degree of confusion, with or without
the aid of the PC transformation. SVM is negatively influenced
by PC transformation while RPART highly improves its
performance and the remaining methods do not seem to be
greatly affected by PC transformation. Figure 2B shows the
results of a comparison based on the same experimental
approach, but in this case we used the PLS transformation as an
added technology for dimension reduction. As can be seen, the
PLS does not affect SVM while RPART is improving also in
this case. LDA, NN and NNET seem not to be influenced by
this transformation.

The effect of PLS and PC transformations on the perfor-
mance of the supervised algorithms was compared using
simulated matrices with (Fig. 2C) and without (Fig. 2D) 300
additional genes with randomly generated expression levels.
This second series of matrices were designed to imitate real
datasets of cancer gene expression where few tumour specific
genes are dispersed in a large number of non-tumour-related
genes. As previously demonstrated (25), we found that most
algorithms (except for SVM, which prefers the PLS transfor-
mation rather than the PC) perform similarly when applied to
the matrices consisting only of discriminating genes. On the
other hand, we obtained different results when matrices with
the 300 additional genes were analysed. LDA, RPART and
SVM perform better with PLS transformation. The fitted
regression lines for the three algorithms have angular
coefficients of 0.67, 0.38 and 0.88, respectively. In particular,
LDA becomes more efficient with high CP, while SVM
improves with low CP. NNET (angular coefficient of 0.98)
seems to have the same performance with PC or PLS
transformations, while NN (angular coefficient of 1.1) performs
better with PC transformation.

The comparison of PAM with PLS shows that LDA and
RPART improve their performances with PLS (see
Supplementary Material Fig. ‘PAM vs PLS’). On the other
hand, the comparison of PC with PAM shows that SVM has a
better performance with PAM while the other techniques
remain generally unchanged (see Supplementary Material
Fig. ‘PAM vs PC’).

Finally, we studied the effect of the GA/KNN technique. The
results obtained are that (i) all the classification algorithms
perform similarly with GA/KNN, PC and PAM; and (ii)
RPART and LDA perform much better with PLS rather than
with GA/KNN. The corresponding experiments are shown in

Figure 1. Comparison of the robustness of the selected supervised algorithms.
Misclassification rates were compared using a train test set with CP¼ 0.5% and
a test set with CP ranging from 0.5 to 100%. Simulation parameters (see
Materials and Methods) are c and n, set equal to 3 and 90, respectively, with
n1, n2 and n3 all equal to 30, and p¼ 30 with p1, p2 and p3 all equal to 10.
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the Supplementary Material (Figs ‘GA/KNN vs PC’, ‘GA/
KNN vs PLS’ and ‘GA/KNN vs PAM’).

Varying the number of discriminating genes, patients
and class of tumours

We tested the performance of the six statistical techniques
when three important experimental parameters were varied.
These parameters were the number of cancer discriminating

genes, the number of patients classified in a single tumour
class, and the absolute number of tumour classes examined.
The six graphs in the first row of Figure 3 report the
misclassification trend of each statistical technique obtained
by decreasing the number of discriminating genes (from 50 to
5) and by changing the degree of confusion. Different
intensities of grey are representative of different percentages
of misclassification (from white¼ 0% to black¼ 100%).
NNET appears to be the best methodology in this analysis

Figure 2. Scatter plots showing the misclassification rates with increasing degree of confusion using different methodologies for reduction of data dimension. (A)
Comparison of misclassification rate with and without principal component transformation; (B) comparison with and without partial least square factors; (C) com-
parison of misclassification rate of PCs versus PLSs using simulated matrices that contain only discriminating genes; (D) comparison of misclassification rate of
PCs versus PLSs using simulated matrices that are composed by the discriminating genes and 300 additional genes with random expression profiles. Simulation
parameters (see Materials and Methods) in all cases are c and n equal respectively to 3 and 90, with n1, n2 and n3 all equal to 30, while, p¼ 30 with p1, p2 and p3 all
equal to 10.
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Figure 3. Misclassification rates of the six selected classification algorithms in relation to the following structural variables: (i) the decreasing number of tumour specific genes with increasing degree of con-
fusion (diagrams of row A); (ii) the decreasing number of patients per tumour with increasing degree of confusion (diagrams of row B); and (iii) the increasing number of tumour classes with the increasing
degree of confusion (diagrams of row C). Increasing levels of grey indicate increasing values of misclassification. This figure is presented in the Supplementary Material as a WEB tool that can be used to
predict the misclassification rates of different supervised technologies in relation to the variation of the experimental parameters described above.

H
u

m
a

n
M

o
lecu

la
r

G
en

etics,
2

0
0

3
,

V
o

l.
1

2
,

N
o
.

8
8

2
7



since it maintains a low level of misclassification with up to 30
discriminating genes per tumour class regardless the degree of
confusion. When dealing with CP values lower than 15%, the
NNET error rate is low even in the presence of only five
discriminant genes. LDA and NN show similar classification
patterns but, when the CP is higher than 15% and the number
of discriminating genes is lower than 30, their misclassification
rate is worse than that obtained by NNET. Under this
threshold of discriminating genes, RPART, PAM and SVM
methodologies have instead poorer performances and this is not
dependent upon variation of CP value.

The second and the third rows of graphs in Figure 3 show the
misclassification trends of the selected statistical techniques
with variable number of patients per tumour class (from 100 to
5) and of tumour classes (from 2 to 9), respectively. As above,
for both variables, the effect of increasing degree of confusion
was simultaneously examined and different levels of grey
represent different percentages of misclassification. In these
tests LDA, NNET, SVM and PAM methodologies succeeded in
classifying correctly most patients, regardless of the degree of
confusion, with tumour class number up to 4. When this
number and the CP value increase, all the methodologies
become worse. Nevertheless, LDA maintains generally a better
error rate. RPART and NN show instead a bad misclassification
value even when they are applied to expression matrices with
three classes of tumour.

A perfect classification, regardless of the CP values, is
possible with a number of patients per tumour class greater or
equal to 50, while with a smaller number of patients the
misclassification increases, especially for high CP values. In
general, NNET and LDA present the lowest misclassification
rate and in particular NNET appears to be the best algorithm
with CP < 20%. PAM has, in this case, the worst performance.

Analysing experimental gene expression datasets

Based on the results of the simulation approaches described
above, we have tested two published datasets of gene
expression profiling obtained on two different cancer types
with cDNA microarrays. These are the round blue cell tumour
dataset (3) and the National Cancer Institute dataset (4,5).
Figure 4 and additional figures in the Supplementary Material
show the misclassification trends of the statistical methodolo-
gies applied to these two selected gene expression datasets. The
principal component, the partial least squares transformation,
the shrunken centroid and the GA/KNN gene scoring
methodology, were separately applied to the analysis of both
datasets. The percentage of misclassification was then
estimated with increasing number of factors (PCs and PLSs)
and of genes (PAM, GA/KNN).

These tests show that the analysis of the RBC dataset
achieves a general good misclassification result with all the
four dimension reduction methodologies, but while with six or
eight PLS factors (respectively for LDA and NNET) all the
patients are correctly classified (0% error rate, Fig. 4B), with
PC, shrunken centroid and GA/KNN, one patient with Ewin
family tumour is misclassified as rhabdomyosarcoma (1.56%
error rate, Fig. 4A and C and Fig. ‘GA/KNN with RBC’ in the
Supplementary Material). In particular, LDA and NNET reach
an error rate of 1.56% with 14 and 15 PCs, respectively (70%

of variance captured). The shrunken centroid method and GA/
KNN algorithm require a selection of 72 and 95 genes,
respectively, to obtain the minimum error rate (for the complete
list of genes see Supplementary Material). Figure 4C and F
represents the misclassification trend of the PAM methodology
according to an increasing set of selected genes obtained with
the shrunken centroid method. As expected, the error rate
increases with the decreasing number of selected genes for the
classification. Furthermore, it is worth saying that RPART is
the worse algorithm with both PC or with PLS transformations.

The analysis of NCI60 dataset gives very different results
when PC or PLS transformations are applied. In particular, with
PC all the algorithms present a general high level of
misclassification (�40%). The lowest level of misclassification
(30%) is reached by LDA at the 22nd PCs (80% of captured
variance, see Table 1 for the confusion matrix and Fig. 4D for
misclassification trend). On the other hand, with six to eight PLS
factors all the tumour types are correctly recognised (0% of error
rate, Fig. 4E). The shrunken centroid methodology reaches its
minimum value of misclassification (28%) with a selection of
more than 2000 genes. The GA/KNN technique reaches a
minimum misclassification rate of 35% with 155 genes (for the
list of genes see Supplementary Material). Also in this analysis
the RPART shows the highest misclassification rate.

As a result of the analyses of both RBC and NCI60 datasets,
we have obtained a selection of genes that show the highest
factor loadings for each of the first four PLS factors and could
therefore directly be involved in the biology of these tumours.
These genes are listed in Tables 2 and 3, respectively.

The RBC dataset is characterized by a first factor that includes
genes mostly involved in: (a) protein metabolism and modifica-
tion (cathepsin B, replication protein A2 and ubiquitin-
conjugating enzyme E2DE); and (b) DNA binding (such as
the interleukin 3-regulated nuclear factor, NS1-associated
protein 1 and inhibitor of DNA binding 3 dominant negative
helix–loop–helix protein). This factor seems to be involved in
the differentiation of Ewin family tumour and rhabdomyosar-
coma (see Fig. ‘PLS1 vs. PLS2 for RBC dataset’ in the
Supplementary Material). The second factor contains a variety
of genes involved in cell growth and trafficking (beta actin,
collagen type VII alpha 1, catenin alpha 1, cyclin A2, cadherin
3 P and osteonectin) and separates Burkitt lymphoma and Ewin
family tumour from neuroblastoma and rhabdomyosarcoma.
The third PLS seems to be representative of cell death and cell
cycle while the fourth is representative of cell communication
and DNA repair.

The analysis of the NCI60 dataset shows a less clear
situation, probably related to the large number of diverse
tumours that have been considered in this study. The first factor
includes many genes involved in cell communication, signal
transduction and immune or stress responses like the substrate
of epidermal growth factor receptor kinase, the sgk gene and
natural killer cells protein 4 precursor. This group of genes
seems crucial in the separation of leukaemia from all other
tumour types (see Figs ‘PLS1 vs PLS2 for NCI60 dataset’ in
the Supplementary Material). The second PLS factor highly
correlates with genes involved in (a) calcium, selenium or other
ligand binding like S100 calcium binding protein, glutathione
peroxidase 2 and insulin-like growth factor binding protein 5,
and (b) transport, like caveolin-2 and glucose transporter type
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Figure 4. Comparison of the misclassification rates of the selected statistical technologies on two published gene expression datasets, with the aid of three different
methodologies for reduction of data dimension. (A–C) Misclassification results (y-axes, misclassification percentage) of RBC dataset with increasing number of
principal components, partial least square factors and genes selected with shrunken centroid method, respectively (x-axes). (D–F) Misclassification results of NCI60
dataset with increasing number of principal components, partial least square factors and genes selected with shrunken centroid method, respectively.
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3. PLS 3 seems to be composed by genes involved in signal
transduction and transport, while the fourth factor is more
difficult to define since it contains genes with a variety of
biological functions.

DISCUSSION

The precise classification of tumours is an issue of extreme
importance for the correct diagnosis, treatment and clinical
follow-up of cancer patients. In this context, DNA arrays have
shown the ability to distinguish tumours that are apparently
assigned to the same categories by classical clinical diagnostic
approaches (26) and to predict the clinical status of cancer
patients (3,6,27,28). Different statistical methodologies have
been applied to the analysis of microarray data with different
results (3,6,8,9,11–14,16–19,24–25). The aim of our work was
the comparative evaluation of six most used statistical analyses
(diagonalized linear discriminant analysis, neural networks,
nearest-neighbour, support vector machine, recursive partition-
ing, and shrunken centroid methodology) by testing them in
parallel on a series of simulated as well as on published
experimental datasets and measuring their misclassification rate
given by a 10-fold cross validation.

Two interdependent elements make the problem of cancer
classification particularly difficult: (i) the variation of gene
expression patterns among patients of the same cancer class is
usually remarkable; and (ii) gene expression hallmarks of
different cancer types are still not clearly defined. In this context,
a simulation approach is very important since it allows the
comparison through different simplified experimental situations,
and this is of great help in the interpretation of the results.

Initially, the robustness of the selected discriminant techni-
ques was compared with increasing differences between
training and test sets. As expected, the non-parametric
methodologies SVM and NN were demonstrated to be more
robust, while RPART and NNET had the worst behaviour and
LDA lay between them (Fig. 1). Secondly, the influence of
dimension reduction techniques on classification results has
been tested. It is well established that the performance of
decision rules does not improve as the dimension of the
features (genes) increases. Better results may be obtained if a

feature reduction step is applied. To reduce the dimensionality
of the data there are mainly two statistical approaches: the
construction of new factors as linear combinations of the
original variables (like the principal component analysis or
partial least squared analysis) and the selection of single genes
that have specific expression profile for each tumour class.

Principal component analysis reduces the high dimension-
ality of expression data to only few gene components, which
explain as much of the observed total gene expression variation
as possible, without regard to the response variable. Nguyev
and Rocke compared PC dimension reduction with partial least
squared analysis, mostly applied to the field of chemometrics
(25). In this work the authors demonstrated that PC was
competitive with PLS only if a pre-selection of the discriminat-
ing genes was performed; elsewhere PLS gave better predic-
tion. In fact, in contrast with PC, PLS components are chosen
so that the sample covariance between the response and the
linear combination of genes is maximum. For our analysis
we used either the principal component or partial least square
analyses. As far as the single gene selection is concerned we
used two recently proposed techniques for gene scoring: the
shrunken centroid process of the PAM methodology (19) and
the GA/KNN algorithm that is based both on a genetic
algorithm and the k-nearest neighbour method (17).

We found that recursive partition is the only algorithm that
improves its performance using either PC or PLS factors. The
support vector machine, on the contrary, is badly influenced by
PC transformation but not by PLS transformation. As
previously demonstrated (25), we found that PLS and PC
perform similarly (except for SVM) when all the genes
involved in the transformation are discriminating genes.
Results are different when PLS and PC are applied on the
entire set of genes, including those whose expression profile is
not correlated to a specific tumour category. We found that PLS
can improve the classification performance of LDA, RPART
and SVM techniques while not affecting NNET and worsen the
results of NN (Fig. 2C and D). In particular, LDA improves its
misclassification rate when dealing with a high degree of
confusion, while SVM does the same with low levels of
confusion.

Given the better results obtained with PLS transformation we
proceeded in our simulation analysis using matrices reduced by

Table 1. Confusion matrix of NCI60 dataset obtained by applying the diagonalized linear discriminant analysis with 22 principal components. Italic numbers
represent correctly classified patients while bold numbers represent misclassified patients

Original tumour class Predicted tumour class

Melanoma NSCLSa CNSb Colon Ovarian Renal Breast Prostate Leukaemia

Melanoma 7 0 0 0 0 0 0 1 0
NSCLS 0 4 0 0 2 1 0 2 0
CNS 0 0 5 0 0 1 0 0 0
Colon 0 0 0 5 0 1 0 1 0
Ovarian 0 1 0 0 3 0 1 1 0
Renal 0 0 1 0 0 7 0 0 0
Breast 0 0 0 1 1 0 5 1 0
Prostate 0 2 0 0 0 0 0 0 0
Leukaemia 0 0 0 0 0 0 0 0 6

aNon-small-cell-lung carcinoma. bCentral nervous system.
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Table 2. Genes with the highest factor loadings in the RBC dataset are reported with their symbols and putative biological function. We have associated to each
PLS factor a general biological function that summarizes the genes included in the factors. The complete list of genes is available in the Supplementary Material.
Italic cells contain genes that are discussed in the text

RBC dataset Gene symbol Biological process

PLS 1: protein metabolism and modification—DNA binding
Catenin (cadherin-associated protein) alpha 1 (102 kDa) CTN1 Cell adhesion
Arylsulfatase B ARSB Cell organization, biogenesis
NADH dehydrogenase (ubiquinone) flavoprotein 2 NDUFV2 Electron transport
Electron-transfer-flavoprotein alpha polypeptide ETFA Electron transport
Recoverin RECOV Calcium ion binding
NS1-associated protein 1 NSAP1 RNA binding
Nuclear receptor subfamily 1 group H member 2 NRLH2 DNA binding
Nuclear factor interleukin 3 regulated NFIL3 DNA binding
Inhibitor of DNA binding 3 dominant negative helix–loop–helix protein ID3 DNA binding
Early growth response 1 EGR1 DNA binding
Homo sapiens HMG box containing protein 1 mRNA HBP1 DNA binding
Cathepsin B CTSB Protein degradation
Insulin-like growth factor 1 receptor IGF1R Protein binding
Valyl-trna synthetase 2 VARS2 Protein biosynthesis
Replication protein A2 (32 kDa) RFA2 Protein biosynthesis
Ribosomal protein S16 RPS16 Protein biosynthesis
Ubiquitin-conjugating enzyme E2D 2 (homologous to yeast UBC4/5) UBE2DE Protein modification
Glutamate dehydrogenase 1 GLUD1 Metabolism
Matrix metalloproteinase 2 (galatinase A) MMP2 Extracellular matrix

PLS 2: cell growth and maintainance, calcium binding
Epidermal growth factor receptor pathway substrate 15 EPS15 Calcium ion binding
Cadherin 3 P-cadherin (placental) CDH3 Cell adhesion
Secreted protein acidic cysteine-rich (osteonectin) SPARC Cell adhesion
Metallothionein 1G MT1G Heavy metal binding
Hydroxyacyl-coenzyme A dehydrogenase/beta subunit HADHB Lipid metabolism
Adenylyl cyclase-associated protein CAP Cell organization, biogenesis
Arylsulfatase B ARSB Cell organization, biogenesis
API5-like 1 API5 Cell death
Actin beta ACTB Cell motility
Catenin (cadherin-associated protein) alpha 1 (102 kDa) CTN1 Cell adhesion
Collagen type VII alpha 1 COL7A1 Cell adhesion
Erythrocyte membrane protein band 7.2 (stomatin) EPB72 Cell shape control
Cyclin A2 CCNA2 Mitosis
Transcription factor AP-4 (activating enhancer-binding protein 4) TFAP4 Transcription
NCK adaptor protein 1 NCK1 Signal transduction
Zinc finger protein 103 ZFP103 Nucleic acid binding

PLS 3: cell death—cell cycle
Fas-activated serine/threonine kinase FAST Cell death
Msh (Drosophila) homeo box homologue 2 MSX2 Development processes
Exostoses (multiple) 1 EXT1 Development processes
Adenylyl cyclase-associated protein CAP Cell organization
Presenilin 1 (Alzheimer disease 3) PSEN1 Cell death
Tumor protein p53 (Li–Fraumeni syndrome) TP53 Cell death
Retinoblastoma-like 2 (p130) RBL2 Cell cycle
Collagen type V alpha 2 COL5A2 Cell adhesion
Cyclin I CCNI Cell cycle control
Lysyl oxidase-like 2 LOXL2 Heavy metal binding
Selenium binding protein 1 SELENBP1 Selenium binding
Fatty acid binding protein 4 adipocyte FABP4 Transport
Rhesus blood group D antigen RHD Transporter
Solute carrier family 16 (monocarboxylic acid transporters) member 1 SLC16A1 Transport
Membrane cofactor protein MCP Immune response
Coagulation factor X F10 Haemostasis

PLS 4: cell communication and DNA repair
Vinculin VCL Cell adhesion
TIA1 cytotoxic granule-associated RNA-binding protein-like 1 TIAL1 Cell death
Phosphofructokinase liver PFKL Energy pathway
Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein theta polypeptide YWHAQ Signal transduction
TATA box binding protein TAF2H Transcription regulation
Excision repair cross-complementing rodent repair deficiency complementation group ERCC3 DNA repair
Ataxia telangiectasia mutated ATM DNA repair
Heterogeneous nuclear ribonucleoprotein A1 HNRPA1 Nucleic acid binding
Serine protease inhibitor Kazal type 2 (acrosin-trypsin inhibitor) SPINK2 Immune response
Human 90-kda heat-shock protein gene HSPCP1 Immune response
Platelet-activating factor acetylhydrolase isoform Ib gamma subunit PAFAH1B3 Lipid catabolism
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this technique (simulation results obtained instead with
principal component analysis are available in the
Supplementary Material). Then, focusing on PLS transforma-
tion we compared the classification techniques along several

experimental conditions to establish which methodology is
most suitable in each situation. Our simulation results show
that misclassification patterns are similar for all the supervised
techniques but at different levels (Fig. 3). In particular, we

Table 3. Genes with the highest factor loadings in the NCI60 dataset are reported with their symbols and putative biological function. We have associated with each
PLS factor a general biological function that summarizes the genes included in the factors. The complete list of genes is available in the Supplementary Material.
Genes that are discussed in the text are in italic cells

NCI60 dataset Gene symbol Biological process

PLS 1: cell communication
Epidermal growth factor receptor kinase substrate EPS8 Signal transduction
Caldesmon CALD1 Protein binding
Lectin, galactoside-binding, soluble, 3 (galectin 3) LGALS3 Galactose binding lectin
Homo sapiens CAGH3 mma CAGH3 Embryogenesis and morphogenesis
V-ets avian erythroblastosis virus E26 oncogene homolog 2 ETS2 Embryogenesis and morphogenesis
Aldehyde dehydrogenase 6 ALDH6 Metabolism/oxidoreductase
Integrin beta-5 subunit ITGB5 Cell–matrix adhesion
Tissue inhibitor of metalloprotease 3 TIMP3 Metalloprotease inhibitor
Uncoupling protein 2 UCP2 Ion transport
Human lysophospholipase homolog LYPLA1 Hydrolase
Homo sapiens sgk gene SGK Stress response
Natural killer cells protein 4 precursor NK4 Immune response
Human BRCA2 region BRCA2 DNA damage response
Cathepsin L CTSL Protein degradation

PLS 2: ligand binding and carrier transport
S-100p protein S100P Calcium binding
Glutathione peroxidase 2, gastrointestinal GPX2 Selenium binding
Insulin-like growth factor binding protein 5 IGFBP5 Protein binding
Lysyl oxidase LOXL2 Heavy metal binding
Ets variant gene 4 ETV4 Transcription regulation
Protein-tyrosine-phosphatase PTPRZ2 Hydrolase
Junction plakoglobin JUP Cell adhesion
Caveolin-2 CAV2 Protein transport
Natural killer cells protein 4 precursor NK4 Immune response
Fibronectin 1 FN1 Immune response
Glucose transporter type 3, brain SLC2A3 Glucose transporter
Caveolin, caveolae protein CAV Protein transport

PLS 3: signal transduction—transport
Coagulation factor III F3 Signal transducer
Basic fibroblast growth factor FGFR1 Signal transducer
Filamin 1 FLNA Signal transduction
Cardiac gap junction protein GJA1 Transport
Membrane glycoprotein precursor THY1 Protein transport
Human intestinal peptide-associated transporter hpt-1 CDH17 Protein transport
Atp synthase lipid-binding protein p1 precursor ATP5G1 Hydrogen transport
Annexin I ANX1 Lipid binding
Lectin, galactoside-binding, soluble, 3 (galectin 3) LGALS3 Galactose binding lectin
Fibroblast growth factor 2 FGF2 Cell proliferation
Cysteine-rich, angiogenic inducer, 61 CYR61 Cell proliferation
Human D53 (hd53) TPD52L1 Oncogenesis
Tissue factor pathway inhibitor 2 precursor TFPI2 Hemostasis

PLS 4: cell communication
Tissue inhibitor of metalloproteinase 3 TIMP3 Metalloprotease inhibitor
Glucose transporter type 3 GLUT3 Transport
Mox-2 MOX2 Transcription regulation
Urokinase-type plasminogen activator UROK Cell motility
Dihydrodiol dehydrogenase DDH Amino acid metabolism
Integrin, alpha 6 ITGA6 Cell adhesion
Laminin, alpha 3 LAMA3 Cell adhesion
Midkine (neurite growth-promoting factor 2) MDK Cell proliferation
Annexin I ANX1 Lipid binding
Annexin III ANX3 Lipid binding
Clusterin CLU Immune response
Glycogen phosphorylase l PYGL Amino acid metabolism
Glutathione s-transferase m3 (brain) GSTM3 Glutathione transferase
Major histocompatibility complex, class II, DR beta 5 HLA-DRB5 Immune response
Human FK-506 binding protein homologue FKBP38 Signal transduction
Tyrosine-protein kinase receptor eck precursor TYR03 Receptor
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found that most of the methodologies perform well until they
are applied to a threshold number of four tumour classes, while
with a higher number all the algorithms begin to misallocate
individuals (Fig. 3C). LDA shows the lowest error rate even
with an increasing CP degree and an increasing number of
classes. Fifty homogeneous patients per tumour class seems to
be the best experimental condition for classification purposes,
but in the case of a low degree of confusion even smaller
numbers of patients are plausible (Fig. 3B). In this case, NNET
seems to perform better than all the other methods when CP is
less than 22% and the number of patients is less than 50. Thirty
is the minimum number of discriminating genes required for a
good classification (Fig. 3A). For small CP values all the
methodologies have small error rates, but NNET seems to have
the lowest misclassification with CP< 22%. LDA and NN
show a misclassification pattern similar to the NNET one but
they reach a higher error rate in worse experimental conditions.

In our test, NNET has demonstrated highly flexibility even
in difficult experimental conditions such as small number
of patients and discriminating genes per tumour type.
Nevertheless, NNET has a poor robustness, namely it could
fail to correctly classify an unknown patient case with a rather
different profile from those belonging to the train set. We have
used a feed-forward neural network with only one hidden layer,
a very simple form of neural network. Therefore we think that
NNET with different designs could improve further the ability
to recognize tumour expression profiles. However it should be
mentioned that neural networks could be affected by over-
fitting problems when they are challenged with a large amount
of expression data. On the other hand, LDA showed a
classification capacity similar to that of NNET but with a
higher degree of robustness. The application of LDA implies
the assumption of the plausible hypothesis that the expression
levels within tumour types follow normal distributions. This
may give an advantage to this methodology in the prediction
phase; in fact non-parametric algorithms (NNET, NN, SVM
and RPART) must estimate with non-parametric techniques the
underlying density distribution. Non-parametric density estima-
tion is highly influenced by the available number of observa-
tions (29) and in cancer classification the number of patients
diagnosed for a certain tumour type is often quite small. This
implies that the density estimation of the non-parametric
classification methodologies may represent more poorly the
real allocation of gene expression than normal distribution.

Two published cDNA microarray datasets were used to
compare the selected methodologies and to test our simulation
results. These datasets were dimensionally reduced with
principal component analysis, partial least squared, shrinkage
centroid and GA/KNN algorithm and then analysed with
discriminant analysis on the selected features (Fig. 4 and
Supplementary Material). RBC dataset shows a very small
percentage of misclassification with all the dimension reduction
techniques and with the majority of the classification
methodologies (Fig. 4A–C and Fig. ‘GA/KNN with RBC’
in the Supplementary Material). NCI60 dataset has a general
misclassification rate of �40% either with PC transformation
or with shrinkage centroid (Fig. 4D and F) or with GA/KNN
algorithm (see figure ‘GA/KNN with NCI60’ in the
Supplementary Material), and a perfect classification with 6
PLS factors (Fig. 4E). LDA and NNET are the best algorithms

for both the datasets, but generally LDA reaches the perfect
classification with the smallest number of factors.

The results obtained with these two datasets are in agreement
with our simulation results. RBC has four tumour classes
(situation in which all the algorithm perform well). Two of
them, Ewin family tumour and rhabdomyosarcoma, contain
more than 20 patients, neuroblastoma has 12 patients and
Burkitt lymphoma has eight patients. Our simulation approach
has shown that NNET and LDA perform better in the case of
small number of patients per tumour class and this is confirmed
by the analysis of the RBC expression data. The NCI60 dataset
on the other hand has nine tumour classes and we have
demonstrated that with this high number of classes and medium
level of confusion the best technique is LDA. NCI60 has also a
small number of patients per class (a minimum number of two
for prostate cancer and a maximum of nine patients for non-
small-cell-lung carcinoma) and NNET is the suitable algorithm
in this situation.

PC and PLS factor loadings are sort of ‘weights’ of the
original variables that contribute to the global score represented
by the factor. In particular, PLS factors are constructed
maximizing the covariance between the response variable (type
of tumours) and the linear combination of gene expression
values. Each factor should be representative of a particular
feature of the data that mostly separates the different classes of
tumours. Genes belonging to factors with high loadings may
therefore be considered as representative of a specific tumour
class. The application of the supervised and dimensional
reduction technologies to both the cancer datasets, according to
our experimental approach, resulted in the selection of a series
of genes with the highest loadings per factor (Tables 2 and 3).
In particular, proteases such as matrix metalloproteinases
(MMP-2 selected in RBC and MMP-3 selected in NCI60)
are capable of degrading extracellular matrix and basement
membranes and have been implicated in human brain tumours.
Within this group, attention has been focused on the gelatinases
(MMP-2 and MMP-9), which are thought to play an important
role in tumour progression (30). In the NCI60 dataset our
analysis has selected fibronectin 1 that has also a matrix
metalloproteinase-9 and metalloproteinase-2 secretion stimu-
lating activity (31) and seems to play a role in tumour
progression, by facilitating tissue invasion. Over expression of
osteonectin (selected in the RBC dataset) in human hepatocel-
lular carcinoma was suggested to play a role in tumour
progression (32) and this gene is also expressed in human
breast cancer (33). Current evidence strongly supports a role
for the breast tumour suppressor genes BRCA1 and BRCA2
(found in NCI60), in both normal development and carcino-
genesis. These genes have been suggested to be important for
the maintenance of genome integrity and to have a role in DNA
repair by homology-directed double-strand break repair (34)
and mutations of BRCA2 cause familial early onset of breast
and ovarian cancer. Recoverin, a retina-specific calcium-
binding protein, was often found deregulated in association
with small-cell lung cancer (35). The cysteine proteinases
cathepsin B and L, selected by our analysis in the RBC and
NCI60 datasets, respectively, are implicated in tumour invasion
in vivo and in vitro as important mediators of metastasis (36). In
addition cathepsin B was found overexpressed in skeletal
muscle of patients with early lung cancer, and a role was
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suggested for this gene in inducing muscle wasting in the early
stages of lung cancer (37). Reduced expression of laminin
alpha 3 (selected in NCI60) and alpha 5 chains was shown
in non-small cell lung cancers (38). Proteins of the cadherin
family regulate cellular adhesion and motility and are believed
to act as tumour suppressors. Cadherin-3, selected in the RBC
dataset, was mapped close to the E-cadherin gene where
frequent mutation and allelic inactivation were related to
diffuse gastric cancer (39). Insulin-like growth factor binding
protein, selected both in RBC and NCI60 datasets, which
regulates the growth promoting effects of the IGFs on cell
culture, has been reported to be expressed in poorly
differentiated rhabdomyosarcoma cell lines (40). Loss of
annexin 1, selected in NCI60, correlates with early onset of
tumourigenesis in oesophageal and prostate carcinoma (41).

The presence of known oncogenes in the group of genes with
high factors loadings makes it interesting to study the role of
novel transcripts that are included in the same lists as well as of
known genes for which functional evidence of direct involve-
ment in tumours have not yet been reported.

Gene expression profiling shows great promise as a potent
molecular diagnostic tool. The capacity of prediction of this
approach depends on the pathologies considered, the statistical
classification techniques applied for data analysis and the
number of variables that are involved in each particular
experimental situation. Our simulation results, confirmed by
the analysis of experimental datasets of expression profiles,
have demonstrated how experimental variables may affect
classification results and how different classification algorithm
can change their performance in relation to these variables. A
better comprehension of the influence of these factors on the
precision and efficacy of the results that can be obtained with
the microarray technology may help the scientists initially in
the phase of experimental planning and then in the phase of
analysis and interpretation of expression data.

Our work proposes the method of choosing a suitable
methodology for each experimental system. To this aim, a
WEB tool has been constructed (available in the
Supplementary Material) to help scientists who use DNA array
data for cancer classification to choose the best statistical
algorithms in relation to their particular experimental variables.

MATERIALS AND METHODS

Simulated matrices

The level of expression of a single gene spot in DNA
microarray is represented by the non-negative ratio between
two signal intensities. These signals result from the competitive
hybridization for the same gene of two different RNAs (the
reference and the test RNA) that are labelled with diverse
fluorochromes (usually the cyanides Cy3 and Cy5). For our
simulation approach, ratios are independently generated from a
gamma distribution with scale parameter a set equal to 1 and
shape parameter b� 1. Our decision of fixing the scale
parameter is based on the consideration that, since mean and
variance of a gamma distribution are respectively ab and a2b,
the parameter a influences the simulated values mostly with an
increase of variability. The increase of variability among cancer

groups in our simulated matrices was performed with a
shuffling of the simulated discriminating genes across tumour
categories, then, we decided, for simulation strategy purposes,
fixing the a parameter. Gamma distribution was already applied
for microarray data modelling and testing (42), demonstrating
its capability to fit well the DNA expression data. The higher
the shape parameter, the higher the simulated gene expression
value will be (see Supplementary Material for details on
gamma distribution). Gene expression data obtained from
microarray experiments can be represented as a matrix of n
rows (RNA samples) and p columns (genes) where xij, with
i¼ 1, . . . , n and j¼ 1, . . . , p, are ratio values obtained as
described before.

In our simulation, c is the number of tumour classes,
{n1, n2, . . . , nc}, (with Sni¼ n) are the number of patients per
tumour and {p1, p2, . . . , pc} (with Spi¼ p) defines a partition
of the total number of genes (see Supplementary Material for
details). In a perfect classification case, the ith group of genes,
pi, will be highly expressed in only one tumour class, say i, and
weakly/moderately expressed in all the other tumour classes,
say j with j¼ 1, 2, . . . , c for all j 6¼ i. In all the simulated
matrices, if not differently reported in the text, c and n are set
equal to 3 and 90 respectively, with n1, n2 and n3 all equal to 30
and pi equal to 10.

Introduction of random variability

The amount of variance among tumour types and between
patients with the same tumour is the cause of misclassification.
Expression matrices were generated to mimic these ‘states of
confusion’. The increasing degree of confusion is generated by
a random introduction of variability in the expression pattern of
all patients. The variability among tumours is progressively
decreased and, concurrently, the variability between patients is
augmented as follows: a given portion of the highly expressed,
tumour-specific genes is switched off by decreasing their
expression levels, while genes belonging to low expression
class are switched on by increasing their expression levels. In
both cases, the targets genes are randomly chosen. This portion
uniquely determines the degree of confusion that hereafter will
be called CP (confusion percentage). CP¼ 0% is the state of
perfect classification while CP¼ 50% is the state of completely
random classification.

Three hundred additional genes were introduced to simulate
real cancer expression datasets where only a small proportion
of genes are considered tumour-specific. Therefore, the
discriminating genes represent less than the 10% of the total
number of genes. The levels of expression of the extra genes
were randomly generated from a gamma distribution with
shape parameters randomly sampled from 1 to 10.
Furthermore, the expression levels of the highly transcribed
genes ( pi with i¼ 1, 2, . . . , c) were distributed such that only
5% of the tumour-specific genes had a 10-fold level, 10% a
5-fold level, 10% a 3-fold level and 25% a 2-fold level versus
the expression level of normal control.

Robustness

The performances of the selected discriminant analyses were
tested in the case of training set highly different from the test
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set. A simulated expression matrix with CP¼ 0.5% (close to a
situation of perfect classification) was fixed as training set
while all the other matrices with CP> 0.5%, were used as test
sets. No transformation was applied.

Effects of methodologies for reduction of data
dimension

We have generated three sets of 15 matrices only with
discriminating genes and without the introduction of the 300
additional genes with random expression values. Each of the 15
matrices corresponds to a different level of confusion ranging
from 0 to 50%. The first set has original simulated expression
levels, the second was equal to the first set but with matrices
converted into principal components (PC), the third was equal to
the first but with matrices converted into factor obtained with
partial least squared analysis (PLS). Then, we compared the
misclassification results at increasing degree of confusion: PLS
versus no transformation, PC versus no transformation, and PLS
versus PC. Subsequently, PLS and PC transformations were
also confronted on two other sets of matrices containing the 300
additional genes. Furthermore, shrunken centroid and GA/KNN
technique were applied on the simulated matrices and genes
with the highest scoring levels were selected. Then, discriminant
techniques were applied only on these sets of genes.
Misclassification results were compared with those of PLS, PC.

Decreasing the number of discriminating genes

The performances of the six selected statistical methodologies
were analysed according to the variation of the number of
tumour-specific genes. After fixing the number of tumour
classes (c) to 3 and the number of patients per tumour class (ni

with i¼ 1, 2, 3) to 30, we generated matrices with equally
decreasing p1, p2 and p3 from 50 to 3 for CP values ranging
from 0 to 50%. A total of 90 matrices were generated.

Increasing the number of tumour classes and patients
per class

The performances of the six selected statistical techniques were
compared according to the variation of the number of tumour
class and of the number of patients per tumour class. For each CP
value, we created eight different matrices with a fixed number of
30 patients per tumour class and with increasing number of
tumour class from 2 to 9. A total number of 120 matrices were
produced. Furthermore, for each CP value, nine matrices were
generated with numbers of homogeneous patients per tumour
(n1, n2, . . . , nc) decreasing from 100 to 5, while the number of
tumour classes was maintained equal to 3. This resulted in the
production of a total of 135 additional matrices.

Published datasets

Two experimental gene expression datasets were used to
compare the selected discriminant analyses: (i) the NCI60
dataset—in a project of the National Cancer Institute for the
screening of anti-cancer drugs, a cDNA array with 5519 genes
was used to study the expression profiles of 60 human cell lines
derived from nine tumour classes (4–5); (ii) the RBC dataset—a
cDNA array of 2303 genes was used to study the expression
signatures of four round blue cell tumours of childhood (3).

These datasets are available at http://genome-www.stanford.edu/
nci60 (NCI60) and at www.nature.com (RBC) respectively.

Biological interpretation of factors with published
datasets

For each expression dataset we calculated the number of PLS
factors needed to reach the minimum rate of misclassification.
For each factor we then identified a list of genes with the
highest PLS loadings that can be considered as markers of each
class of tumour. All the genes were annotated with their
correspondent biological function according to the AmiGO
browser for gene ontology (www.geneontology.org). Each gene
participates, albeit at different degrees, in all the extracted
components. This means that a single gene can be involved in
more than one functional network characteristic of a different
class of cancer.

Statistical techniques

Six different supervised learning techniques were chosen for
our comparison (43,44): (i) the diagonalized linear discriminant
analysis (LDA); (ii) the recursive partitioning (RPART); (iii)
the feed-forward neural networks (NNET) with only one
hidden layer; (iv) the support vector machine (SVM); (v) the
nearest neighbour (NN); and (vi) the shrunken centroid
methodology (PAM).

Furthermore, four dimension-reduction techniques were
chosen for the analysis: principal component analysis, partial
least squared analysis, the shrunken centroid gene scoring
methodology implemented in an freely available software for R
package, called PAM (www-stat.stanford.edu/�tibs/PAM/
index.html) and the GA/KNN algorithm kindly provided by
the authors. For a more detailed description of these statistical
techniques see the Supplementary Material. The analyses
described in the Results section were performed with dedicated
functions implemented for the statistical package R for Linux
system, available at www.r-project.org (43,44).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online and also at
http://muscle.cribi.unipd.it/microarrays/simulation/.
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