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Abstract Di¡erential diagnosis among a group of histologi-
cally similar cancers poses a challenging problem in clinical
medicine. Constructing a classi¢er based on gene expression
signatures comprising multiple discriminatory molecular
markers derived from microarray data analysis is an emerging
trend for cancer diagnosis. To identify the best genes for clas-
si¢cation using a small number of samples relative to the ge-
nome size remains the bottleneck of this approach, despite its
promise. We have devised a new method of gene selection with
reliability analysis, and demonstrated that this method can iden-
tify a more compact set of genes than other methods for con-
structing a classi¢er with optimum predictive performance for
both small round blue cell tumors and leukemia. High consensus
between our result and the results produced by methods based
on arti¢cial neural networks and statistical techniques confers
additional evidence of the validity of our method. This study
suggests a way for implementing a reliable molecular cancer
classi¢er based on gene expression signatures.
% 2004 Published by Elsevier B.V. on behalf of the Federation
of European Biochemical Societies.

Key words: Microarray; Functional genomics;
Bioinformatics; Cancer; Classi¢cation; Gene expression

1. Introduction

Cancers are conventionally classi¢ed by the type of tissue in
which the cancer originates. However, the subjective interpre-
tation of the histopathology of a cancer specimen is subject to
human error or bias, as illustrated by a study in which an
agreement rate of only 41% was observed among independent
pathologists regarding the subtypes of lung adenocarcinoma
[1]. Moreover, many cancers are atypical or lack distinctive
morphological features for correct di¡erential diagnosis. To
complicate the matter, cancers with similar histopathological
appearances may di¡er substantially in terms of therapeutic
responses and clinical courses. For example, it is di⁄cult to
make di¡erential diagnosis among the group of small round
blue cell tumors (SRBCTs) including four histologically sim-
ilar types of tumor, but accurate diagnosis is crucial because
treatment and prognosis vary depending on the tumor type
[2].

The limitation of the morphology-based approach to cancer

classi¢cation has led to molecular classi¢cation, which prom-
ises more objective and accurate cancer classi¢cation. Tech-
niques such as immunohistochemistry and reverse transcrip-
tion polymerase chain reaction are used to detect cancer-
speci¢c molecular markers, but pathognomonic molecular
markers are unfortunately unavailable for most solid tumors
[3]. Furthermore, molecular markers do not guarantee a de-
¢nitive diagnosis owing to possible failure of detection or
presence of marker variants.

Microarray-based gene expression pro¢ling has recently
emerged as a promising approach to cancer classi¢cation for
diagnostic, therapeutic, and prognostic decisions. This ap-
proach has gained increasing interest, following the success
in demonstrating that microarray data di¡erentiated two
types of leukemia [4]. DNA microarrays measure gene expres-
sion on a genomic scale to determine which genes are active or
silent in cancer or normal cells, permitting simultaneous anal-
ysis of multiple known or unknown markers. The microarray-
based approach has become a modern trend in cancer re-
search and management [4^11].

It is generally more di⁄cult to di¡erentiate subtypes of
cancer with similar histological pictures than those with dis-
tinctive appearances. Diagnosis involving multiple cancer cat-
egories is also more di⁄cult than the case of two categories.
Multi-class cancer subtype classi¢cation based on statistical
techniques [12] and arti¢cial neural networks [2] has been
demonstrated.

Microarray data analysis is characterized by extremely high
data dimensionality due to a large number of gene expression
values measured for each tissue sample on an array. At the
same time, the sample size is typically far smaller than the
data dimension. This situation necessitates dimensionality re-
duction through gene selection to avoid data over-¢tting and
improve generalization of discriminant analysis. In the context
of cancer classi¢cation, a gene expression signature refers to a
set of di¡erentially expressed genes which, combined in a cer-
tain formalism, can discriminate one cancer from others. The
objective of gene selection is to select those genes whose ex-
pressions de¢ne a signature for a particular cancer. Ap-
proaches to gene selection range from statistical analysis [4]
and a Bayesian model [13] to Fisher’s linear discriminant
analysis [14] and support vector machines (SVMs) [15]. We
notice, however, fundamental issues concerning reliability and
diversity have not been addressed adequately. Both issues are
critical as the process of gene selection may be sensitive to
algorithmic parameters and data composition. To address
these issues, we present a new method for multi-class cancer
subtype classi¢cation that uses a cross-validation mechanism
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to confer both reliability and diversity to selected genes. We
show how to obtain reliable gene expression signatures for
cancer subtype classi¢cation by conducting reliability analysis
of selected genes. This method selected a smaller set of genes
than previously reported techniques while maintaining the
optimum level of predictive performance on the benchmark
microarray data sets of SRBCTs and leukemia.

2. Materials and methods

2.1. Microarray gene expression data
The SRBCT data set includes 63 training samples and 25 test sam-

ples derived from both tumor biopsy and cell lines [2]. In consistency
with other reports in the literature, we used the test set of 20 samples
after ¢ve non-SRBCT samples were removed. The data set consists of
four types of tumor in childhood, including Ewing’s sarcoma (EWS),
rhabdomyosarcoma (RMS), neuroblastoma (NB), and Burkitt lym-
phoma (BL). The data were obtained from cDNA microarrays. After
initial screening, the data set in the public domain contains 2308
genes, and is available at http://research.nhgri.nih.gov/microarray/
Supplement/.

The leukemia data consist of 72 tissue samples, each with 7129
gene expression values. The samples include 47 acute lymphoblastic
leukemia (ALL) and 25 acute myeloid leukemia (AML). The original
data have been divided into a training set of 38 samples and a test
set of 34 samples. The data were produced from A¡ymetrix gene
chips. The data set is available at http://www-genome.wi.mit.edu/
cancer/.

2.2. Gene ranking
Multivariate gene selection is best exempli¢ed by a technique based

on SVMs [15], which have been recognized as a powerful approach to
classi¢er design [16,17]. The computational principle of a SVM is to
¢nd a particular hyperplane that o¡ers the maximum possible sepa-
ration between di¡erent classes of instances. The basic problem for
training a SVM can be reformulated as: given a set of n training
instances, each represented as ( x!i , yi) where x! is the feature vector,
y is the class label and 19 i9 n, maximize

J ¼
Xn

i¼1

K i3
1
2

Xn

i¼1; j¼1

yiyjK iK jð x!i W x!jÞ

subject to
Xn

i¼1

yiK i ¼ 0 and K iv0; 19i9n:

The optimal hyperplane that separates di¡erent classes of objects can
be constructed from the solutions Ki ’s to this maximization problem.
When the instances are not linearly separable, a soft-margin algorithm
as an extension of the basic algorithm is available [18].

Gene ranks are determined by the SVM recursive feature elimina-
tion algorithm [15], in which the least important feature is identi¢ed
and removed, remaining features are re-evaluated, and the process is
repeated until no more features are available. Mathematically, genes
are ranked by the absolute magnitude of the associated weight in the
weight vector given by

w!¼
X

i

K iyi x
!

i

The smaller the associated weight magnitude, the lower the rank of
the gene. To re-rank the remaining genes, the SVM is trained again
based on the data where the feature vector of each training instance is
encoded only by the remaining genes.

2.3. Reliability analysis of gene selection
The innovative feature of our method is to conduct reliability anal-

ysis for arriving at the gene expression signature. The analysis assesses
the repeatability of genes selected and determines the repeatability for
gene selection using M-fold cross-validation. Cross-validation is a
method for measuring the generalization performance of a machine
learning or pattern recognition system, but the application of this
technique to learning the pattern in the data is novel.

In the 10-fold cross-validation approach, the data set is divided into
10 disjoint subsets of about equal size. Genes are selected on the basis
of nine of these subsets, and then the remaining subset is used to
estimate the predictive error of the trained classi¢er using only the
selected genes. This process is repeated 10 times, each time leaving one
set out for testing and the others for training. The cross-validation
error rate is given by the average of the 10 estimates of the error rate
thus obtained.

In each cross-validation cycle, we conduct SVM-based gene ranking
and selection operations. We select a minimal set of genes by collect-
ing from the top rank one by one and picking the set associated with
the minimum error rate with respect to the training data in each cross-
validation cycle. There is no guarantee that the same subset of genes
will be selected in each of the 10 cycles during the 10-fold cross-
validation experiment. However, a vital gene tends to be selected
consistently across cycles. The signi¢cance of a gene appears to be
correlated with the repeatability of selection. We associate each se-
lected gene with a repeatability value indicating how many times it is
selected in the cross-validation experiment. The biological or clinical
interpretation of ‘repeatability’ would depend on the objective and
design of the microarray experiment. We consider the validity of a
selected gene by its reliability. The reliability is measured by the re-
peatability that a gene is selected in the 10-fold cross-validation ex-
periment. That is, the more often a gene is selected, the less likely
chance is a factor.

In application of M-fold cross-validation to n samples, M can as-
sume a value ranging from 2 to n. A small M is not su⁄cient to assess
the repeatability of selected genes while a large M (e.g. M= n in the
leave-one-out experiment) is associated with a high degree of redun-
dancy on data for training and low diversity of genes selected. As our
experience shows, M=10 is a good trade-o¡.

To select the ¢nal set of genes, we need to determine the repeat-
ability threshold. A gene is in the ¢nal set if its repeatability reaches
(i.e. no less than) the threshold. To this end, a second 10-fold cross-
validation is performed. Then we choose the repeatability threshold
associated with the minimal cross-validation error.

To extend the method from two-class to multi-class classi¢cation,
we adopt the one-against-all-others strategy under which genes are
selected for each class one at a time and then combined. For each
class, all the other classes are grouped as a single class. In this way, a
multi-class gene selection problem is converted into a series of two-
class problems. The current program is available at http://www.cise.
u£.edu/Vfu/NSF/cancer_classify_GES.html. The program was writ-
ten in Matlab. An SVM Matlab toolbox as well as Mathlab is re-
quired for program use.

3. Results

The reference method with which we compared our method
applied SVM-RFE to select genes from the whole training
data without reliability assessment. The reference method [3]
is a multi-class extension of the SVM-RFE method [15] used
for two-class classi¢cation. The SVM-RFE method (two-class
or multi-class) has not been applied to the SRBCT data. We
implemented the computer algorithms of both methods for
comparison. The SVM used in this study employed the linear
kernel since we found that it yielded a better result than a
non-linear kernel for the data under investigation, and it is
also consistent with the literature [15]. All SVM parameters
were set by default. The same experimental conditions were
applied to both methods. For the SRBCT data, the Cy5/Cy3
£uorescence ratio data were log10-transformed; for leukemia
data, the intensity of each gene on an array was divided by the
mean intensity of all genes on that array in order to adjust
variations between arrays.

3.1. SRBCT classi¢cation
On the SRBCT data, our method selected 32 genes (Table

1) from the microarray gene expression data of the 63 training
samples. The SVM classi¢er trained on the 63 training sam-
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Table 1
Genes selected by our method on the microarray dataset of SRBCTs

Image ID Gene description Tibshirani et al. Khan et al.

21652 catenin (cadherin-associated protein), K1 b b

298062 troponin T2, cardiac b b

383188 recoverin b

755750 protein (NM23B) in non-metastatic cells 2 b

769716 neuro¢bromin 2 b

878280 collapsin response mediator protein 1 b

377461 caveolin 1, caveolae protein b b

325182 cadherin 2, N-cadherin (neuronal) b b

1435862 MIC2 surface antigen (CD99) b b

42558 L-arginine:glycine amidinotransferase b b

812105 transmembrane protein b b

767183 hematopoietic cell-speci¢c Lyn substrate 1 b

41591 meningioma 1 b b

810057 cold shock domain protein A b

183337 major histocompatibility complex, class II, DM K b b

796258 sarcoglycan, K b b

1409509 troponin T1, skeletal, slow b b

788107 amphiphysin-like b

143306 lymphocyte-speci¢c protein 1
866702 protein tyrosine phosphatase, non-receptor type 13 b b

770394 Fc fragment of IgG, receptor, transporter, K b b

82225 secreted frizzled-related protein 1 b

52076 olfactomedin-related endoplasmic reticulum-localized protein b b

80109 major histocompatibility complex, class II, DQ K1 b b

814260 follicular lymphoma variant translocation 1 b b

784224 ¢broblast growth factor receptor 4 b b

204545 ESTs b b

244618 ESTs b b

295985 ESTs b b

308231 myh-1c b

308163 ESTs b b

212542 cDNA DKFZp586J2118 b b

Those genes also selected using the methods of Tibshirani et al. [12] and Khan et al. [2] are marked by the symbol b.

Fig. 1. The gene expression map of the 32 genes selected by our method for SRBCTs. The map was generated by Eisen’s hierarchical clustering
program called CLUSTER and viewed by the TREEVIEW program. Four sample clusters are visually recognized, corresponding exactly to the
four prede¢ned tumor classes (EWS, BL, NB, and RMS) with 100% accuracy.
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ples using the 32 selected genes was tested on the 20 di¡erent
test samples. Both the training and test predictive accuracies
were 100%. That is, the trained SVM classi¢er can accurately
predict the tumor class using the 32 gene expression data for
both seen and unseen samples. Since the classi¢er may tend to
¢t the training data, the generalization performance of the
classi¢er is indicated by the test accuracy.

The reference method selected eight genes with 100% train-
ing accuracy but with only 90% test accuracy. It seemed that
the reference method did not select enough genes even though
the selected genes could correctly classify all the training sam-
ples ^ an example of data over-¢tting, whereas the strategy of
using multiple subsets of data in our method adequately dealt
with this problem by taking into account both reliability and
diversity in gene selection.

We examined the consensus of genes selected by our meth-
od and by two other best-known methods: the method of
Khan et al. [2] based on arti¢cial neural networks and the
method of Tibshirani et al. [12] based on shrunken centroids,
and we found that there was high consensus between our and
their results. Out of the 32 genes selected by our method, 29
genes were also selected by Khan’s method and 24 genes by
Tibshirani’s method. This is substantial evidence indicative of
the validity and signi¢cance of our method.

Whether the selected genes served as meaningful markers
for cancer classi¢cation was further con¢rmed by cluster anal-
ysis and visualization. In this regard, we applied a hierarchical
clustering program developed by Eisen [19] to the gene ex-
pression data of the selected genes and then visualized the
internal structure of the data (Fig. 1). The exact match be-
tween the gene expression clusters and the tumor classes at-
tests to the soundness of our method. Later, we discuss the
strength of our method over other methods.

3.2. Leukemia classi¢cation
On the leukemia data, our method selected four genes (Ta-

ble 2) from the microarray gene expression data of 38 training
samples. The SVM classi¢er trained on the 38 training sam-
ples using the selected genes was tested on the 34 di¡erent test
samples. The training and test accuracies were 100% and

97.06%, respectively. In addition, the AML and ALL samples
formed separate clusters in the gene expression map of the
selected genes (Fig. 2).

The reference method also selected four genes and achieved
the same level of test accuracy as our method. Recall, how-
ever, the reference method failed to give the optimum result
on the SRBCT data. The original algorithm of SVM-RFE [15]
selected eight or 16 genes on this data set without giving a
criterion for breaking the tie. The method based on shrunken
centroids [12] selected 21 genes on this data set. The best
achievable unbiased test accuracy on the leukemia data seems
to be 97.1%. Some studies reported 100% test accuracy be-
cause they combined training and test data for gene selection
(bias selection) or because they normalized training and test
data all together. A recent study indicated that the unbiased
error estimate of the classi¢er using a small number of se-
lected genes was virtually non-zero on the leukemia data set
[20]. Taken together, the evidence showed that our method
produced optimum results in terms of both predictive perfor-
mance and the number of selected genes.

4. Discussion

In the context of cancer classi¢cation and discriminant
analysis, gene selection methods are compared by the predic-
tive performance and the number of genes selected. The goal
of gene selection is to select a minimally required set of genes
associated with optimum predictive performance. As part of
validation, selected genes should be biologically important
and o¡er insight into disease mechanisms. Some biologically
signi¢cant genes are not selected if they are correlated with
other even more signi¢cant genes. It should also be noted that
the valid number of selected genes is constrained by the avail-
able sample size.

The two best-known techniques tested on the SRBCT mi-
croarray data set are based on arti¢cial neural networks [2]
and statistical shrunken centroids [12], which selected 96
and 43 genes, respectively, both with 100% accuracy on 63
training and 20 test samples. In comparison, our method se-
lected a smaller set of 32 genes with the same level of perfor-

Fig. 2. The gene expression map of the four genes selected by our method for leukemia. AML and ALL samples are visually separable as two
distinct clusters based on the gene expression pro¢les of the selected genes.

Table 2
Genes selected by our method on the leukemia microarray dataset

Accession number Gene description Golub et al. SVM-RFE

M27891 CST3 cystatin C b b

Y00787 interleukin-8 precursor b b

M19507 MPO myeloperoxidase b

L20688 Ly-GDI

Those genes also selected using the methods of Golub et al. [4] and SVM-RFE (the reference algorithm) are marked by the symbol b.
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mance (100% accuracy on both training and test data), allow-
ing for a more cost-e¡ective classi¢er. The above three tech-
niques including ours selected genes and trained the classi¢er
using the 63 training samples, and the performance of the
classi¢er was tested on the 20 test samples. In contrast, an-
other technique based on statistical within-class variation
mixed the 63 training and 20 test samples and performed
repeated ¢ve-fold cross-validation, resulting in a non-zero
cross-validation error and a smaller set of 21 selected genes;
selected genes were further evaluated using leave-one-out on
the same data set from which the genes were selected [21].

Genes selected by our method for a particular type of can-
cer/tumor against other types are generally consistent with its
tissue of origin. For example, genes selected for NB are char-
acteristic for nerve cells, such as recoverin, neuro¢bromin 2,
neuronal N-cadherin, and meningioma 1; genes selected for
RMS are characteristic for muscle cells, such as cardiac tro-
ponin T2, K-sarcoglycan, and slow skeletal troponin T1; genes
selected for BL are characteristic for lymphocytes or blood
cells, such as hematopoietic cell-speci¢c Lyn substrate 1, ma-
jor histocompatibility complex class II, DM K, and major
histocompatibility complex class II, DQ K1. Some genes dis-
covered by means of microarray analysis have been reported
in the biological literature, e.g. over-expression of MIC2 in
EWS [22]. Some genes are over-expressed in a certain type of
tumor but lack speci¢city. For instance, FGFR4 (¢broblast
growth factor receptor 4) was noted to be highly expressed
only in RMS and not in normal muscle, but it is also ex-
pressed in some other cancers and normal tissues [2]. A
gene that is under-expressed in a particular type of tumor
compared with other types can also be selected as a diagnostic
marker. For instance, cold shock domain protein A selected
for NB was under-expressed in this tumor, consistent with the
fact that this gene is expressed in B cells and skeletal muscle
but not in the brain [12].

The con¢dence in the validity of a selected gene is increased
if it is selected by multiple techniques. This justi¢es the ap-
proach in which gene selection is based on the consensus of
multiple techniques. On the SRBCT data set, the consensus of
arti¢cial neural networks [2], shrunken centroids [12], and our
method selected 22 genes with 100% accuracy on both train-
ing and test data. Thus, it appears to be a good idea in this
case, though it can be argued that the consensus approach
may impose an overly stringent criterion and end up selecting
a less than optimum number of genes.

We emphasize the importance of holding back some data to
improve generalization and diversity of the learning outcome.
The distinctive feature of our method is that gene selection is
determined by both ranking and reliability analyses. Reliabil-
ity analysis is conducted using M-fold cross-validation. Some
gene selection methods [15,21] use cross-validation to deter-

mine the number of selected genes by the minimum cross-
validation error but not by the optimum repeatability as in
our method. Thus, reliability analysis comprising repeatability
measurement and optimum repeatability determination de-
¢nes the novelty of our method, which has enabled a more
accurate and cost-e¡ective cancer classi¢er to be constructed,
compared with the reference method and other methods. The
discovered novel genes that characterize a cancer type may
suggest new molecular targets for drug discovery in addition
to their diagnostic and prognostic signi¢cance in cancer re-
search and management.
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