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ABSTRACT
Motivation: Microarray data appear particularly useful to
investigate mechanisms in cancer biology and represent one
of the most powerful tools to uncover the genetic mechanisms
causing loss of cell cycle control. Recently, several different
methods to employ microarray data as a diagnostic tool in
cancer classification have been proposed. These procedures
take changes in the expression of particular genes into account
but do not consider disruptions in certain gene interactions
caused by the tumor. It is probable that some genes particip-
ating in tumor development do not change their expression
level dramatically. Thus, they cannot be detected by simple
classification approaches used previously. For these reas-
ons, a classification procedure exploiting information related
to changes in gene interactions is needed.
Results: We propose a MAximal MArgin Linear Programming
(MAMA) method for the classification of tumor samples based
on microarray data. This procedure detects groups of genes
and constructs models (features) that strongly correlate with
particular tumor types. The detected features include genes
whose functional relations are changed for particular cancer
types. The proposed method was tested on two publicly avail-
able datasets and demonstrated a prediction ability superior
to previously employed classification schemes.
Availability: The MAMA system was developed using the
linear programming system LINDO http://www.lindo.com.
A Perl script that specifies the optimization problem for this
software is available upon request from the authors.
Contact: antonov@gsf.de

INTRODUCTION
Microarray technology provides a systematic experimental
access to gene regulation reflected by expression levels. The

∗To whom correspondence should be addressed.

method proved its enormous potential to elucidate the nature
of various biological processes within the cell and between
cells at different states. Currently, applications in the classi-
fication of cancer types are of particular interest in medical
diagnosis. Recent successful studies focused on acute leuk-
emia (Getz et al., 2000; Golub et al., 1999), multiple tumor
types (Ramaswamy et al., 2001), colon cancer (Alon et al.,
1999) as well as breast cancer (e.g. van’t Veer et al., 2002).
However, microarray data analyses can also address issues
concerning gene interactions thereby giving deeper insight
into the molecular mechanics of the cell (Bornholdt, 2001;
Kato-Maeda et al., 2001; Soinov et al., 2003).

Numerous algorithms have been proposed and effectively
employed for cancer classification. The majority of them
apply or combine known classification schemes developed
and previously explored within other scientific areas (e.g.
neuroscience). Some of these schemes include an initial
dimension reduction. A very widespread technique is Prin-
cipal Component Analysis (PCA) (Bicciato et al., 2003;
Yeung and Ruzzo, 2001), which transforms data to reduce
dimensions and, at the same time, attempts to preserve inform-
ation on the data variability. Another technique, the Partial
Least Squares (PLS) algorithm, transforms initial variables by
maximizing cross-covariance with the target vector and was
demonstrated to be superior to the PCA approach (Nguyen and
Rocke, 2002). Both these methods use a complex weighted
average of all genes in the initial datasets.

On the other hand, feature selection algorithms identify a
subset of relevant, classifying genes. Such genes are selected
according to their ability to separate different sample classes,
i.e. to distinguish between tumor types or tumors from nor-
mal tissues. Previously developed feature selection algorithms
consider the individual expression profile of a gene as a clas-
sification feature. Popular methods to select for genes employ
the t-statistic (Tsai et al., 2003; Wahde et al., 2002) or the
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Wilcoxon score test (Antoniadis et al., 2003). In addition, the
t-statistic can be used in conjunction with other methods, e.g.
PLS (Nguyen and Rocke, 2002).

A similar approach used by Golub et al. (1999) and
Ramaswamy et al. (2001) is based on the concept of an ‘ideal’
marker gene. The expression profile of such genes is a binary
vector, with value 1 is for all the samples in class A and 0
for all the samples in class B (or vice versa; ‘on’–‘off’). The
selection procedure is looking for marker genes; the genes
with a profile similar to the binary expression profile. The
signal-to-noise ratio measures how well the expression pro-
file of a real gene approximates the ideal marker gene profile.
The genes with the highest signal-to-noise ratio are chosen to
build binary classifiers (Yeang et al., 2001).

In this work, we do not restrict the term ‘feature’ to a single
gene expression profile but rather define it as (non-linear)
functions integrating several of these profiles. The func-
tions are selected to model in mathematical terms biological
relationships among these genes and thus reflect functional
relations among them. This definition of ‘features’ can be
considered as a generalization of the previous model used by
Golub et al. (1999) and Ramaswamy et al. (2001). The genes
forming such features are presumed (and demonstrated) to be
functionally related. Violation of the functional relations in
the feature makes it possible to differentiate between cancer
types. A selection procedure in this context tries to identify a
group of genes, which form a feature that strongly correlates
with an ideal marker gene. After constructing the ideal fea-
ture space based on the training set a simple algorithm such
as weighted voting can be applied for tumor classification.

METHODS
In this section, we introduce a new method for the construc-
tion of gene features for the classification of multiple tumor
types using microarray data. The section is organized as fol-
lows: first, we formulate in mathematical terms our concept
of data transformation and ideal feature construction. Since
for the gene expression data the number of response variables
(i.e. samples/sample classes) is usually much smaller than
the number of predictor variables (i.e. genes) it is possible to
build ideal features in a number of alternative ways. Differ-
ent criteria can be used depending on the procedures applied.
In the second part of this section, we describe a new proced-
ure for the feature selection that maximizes the margin of an
ideal feature, i.e. the value that represents a distance of one
particular tumor type from the others. Finally, we describe a
classification procedure based on the ideal feature concept.

Definition of the ideal feature
Here, we introduce some conventions of notation used in this
paper.

k, n, K Counters and number of samples in the dataset,
respectively

l, L Counter and number of classes, respectively
X, xk

i Input dataset in matrix form
xk Signature of training sample k (the kth row of

matrix X)
xi Expression profile of gene i (the ith column of

matrix X)
αi , β Some real constant or variable depending on con-

text (index represents a gene or some related
vector)

F , F(x) Normalized feature space and the mapping from
the original to the feature space

yk Class of the kth sample
f () A function
Jl , l A set of indices for a group of genes and counter

of such sets
e Unity vector (all components equal to 1)
‖.‖ Norm

The basic idea is the following: via a nonlinear map-
ping X → F(X) the initial input data x1, . . . , xK ∈ RI are
mapped into feature space F . The purpose of such transform-
ation is to achieve that for every two samples of the same class
the scalar product in the feature space is equal to one and for
every two objects from the different classes equal to zero. This
can be described by the following equations

(F (xk)/‖F(xk)‖, F(xn)/‖F(xn)‖) = 1, if yk = yn

(F (xk)/‖F(xk)‖, F(xn)/‖F(xn)‖) = 0, if yk �= yn.
(1)

Let us propose one of the possible approaches to construct a
mapping F(x), which satisfies Equation (1). We define the
ideal feature vectors as binary vectors ul ∈ RK with com-
ponents equal to some positive scalar value zl if the sample
belongs to class l and 0 otherwise. The number of such vectors
is equal to the number of tumor classes, L. Our target is to
construct the ideal feature vectors in the form

ul = −βe +
∑

i∈Jl

αif (xi ), (2)

where Jl is a set of genes that form feature l. The unity vec-
tor −βe is added to the model to include in the analysis
features that can be transformed to the ideal by simple shift of
every component. Thus, the vector

∑
i∈Jl

αif (xi ) has values
equal to zl +β if the sample belongs to class l and β otherwise.

From a biological point of view the ideal feature model
assumes that expression levels of genes from the set Jl are
subjected to multiple positive and negative correlations with
each other. The degree of the correlation remains constant in
all classes except the target class l, where it is changed to
a different value. This can be considered as a change in the
functional relation among the genes that build the feature of
class l. In other words, these genes show an interaction pattern
typical for the tumor or state type.

This approach leaves freedom in the selection of functions
f (·) and procedures to identify the corresponding gene sets Jl .
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Fig. 1. The principle of ideal feature construction. (a), (b), (c), (d) and (e) are the log transformed expression profiles of some hypothetical
genes. No single gene profile has an apparent correlation with samples 6–10, which are the members of the distinct class. However, a linear
function z = g1 − 4g2 + 2g3 − g4 + g5 of these profiles provides the ideal feature as shown in (f).

In this study, the ideal features are constructed in the form
(Fig. 1)

ul = −βe +
∑

i∈Jl

αi log(xi ). (3)

Such choice of f (·) implies that multiple ratios of expression
levels in the corresponding group of genes remain constant.

For example, if only two classes, A and B (e.g. tumor and nor-
mal tissue), are to be discriminated (in case of multiple class
classification, class B includes all classes except A) one has

∏

i∈JA

(xk
i )αi = ezl+β , for each sample k from class A,

∏

i∈JA

(xn
i )αi = eβ , for each sample n from class B.

(4)
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Swapping of classes A and B corresponds to a renormaliza-
tion of constants in Equation (3) and thus leads to the same
classification result.

Optimization procedure for the ideal feature
construction
For simplicity in this section we will consider only posit-
ive linear combinations in Equations (2) and (3). However,
this case could be easily extended to generality by adding to
the input dataset a negative copy of each gene in the form
log(x−

i ) = e − log(xi ).
Microarray expression data tend to have a large discrepancy

between the number of predictors (i.e. genes) and responses
(i.e. samples). Therefore, it is possible to select classifying
gene sets Jl in many different ways. Each such procedure
requires some externally formulated criterion for selection
among probable features. Since the number of species is much
less than the number of genes, it is possible to construct a large
number of ideal features.

A multiplication of coefficients αi in Equation (4) on some
constant t provides

∏

i∈JA

(xk
i )tαi = et(zl+β), for each sample k from class A,

∏

i∈JA

(xk
i )tαi = etβ , for each sample n from class B,

(5)

and t(zl + β)/tβ = (zl + β)/β. For this reason one can con-
sider the ratio (zl+β)/β as margin between class A and class B
and prefer features with minimal unity (βe) component rel-
ative to z. If β is fixed, e.g. to 1, then this ratio is maximized
by maximization of zl . This task can be implemented using
linear programming (LP). LP practically has no restrictions
on the size of the problem that can be solved. Consider the
following optimization problem

max
α,β,s

zl

subject to
−βe + ∑

i∈Jl

αi log(xi ) + s = ul ;

|s| ≤ ε; αi ≥ 0; s ∈ RK .

(6)

The small constant ε bounds deviations of solution of
Equation (6) from the ideal feature. This constant was fixed to
be 5% of 1/K , where K is the number of training set samples.

An example for the geometric interpretation of the ideal
feature generation for the two-class separation is shown in
Figure 2. The constraints in optimization problem (6) ensure
that class A and class B samples are lying in different parallel
hyperplanes (and the distance from each sample to the cor-
responding hyperplane is within the constant ε) in the gene
subspace formed by the gene group Jl . The value of constant
β fixes the distance between hyperplane B and the origin.
The objective of optimization problem (6) is to find such a
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Fig. 2. Geometric interpretation of the classification procedure. The
procedure is looking for a subspace of the gene space (here genes
1, 2, 3) where samples from class A and class B are lying in different
parallel hyperplanes with maximum distance, z, for fixed value of β.
Points represent samples.

gene subspace Jl , where the margin between hyperplanes A
and B is maximal. The proposed procedure is referred to as
MAximal MArgin linear programming (MAMA) method.

Multiple tumor classification procedure
In case of multiple tumor classification the problem (6) is
solved L times and L feature vectors −βe+∑

i∈Jl
αi log(xi )

are formed. The non-zero αi elements in each solution cor-
respond to genes that constitute group Jl , l = 1, . . . , L and
are used in Equation (3). Thus, each constructed feature cor-
responds to one particular class (in our case tumor type).
For each sample k to be classified one calculates L feature
values Fk

l = −βe + ∑
i∈Jl

αi log(xi ) for each tumor class
l = 1, . . . , L and votes P k

l = (F k
l − zl − β)/zl . The index

of the maximum vote l indicates the predicted class for the
sample k.

RESULTS
We applied the MAMA procedure to the dataset on
multiple tumor type classification (Ramaswamy et al.,
2001) and the dataset on acute leukemia classification
(Golub et al., 1999). Both datasets were downloaded from
http://www.genome.wi.mit.edu/MPR

Data preprocessing and gene selection
Both analyzed datasets were subjected to prior filtering pro-
cedures. This was done to remove lowly expressed genes as
well as genes invariant across samples in the training dataset.
In many previous studies (Ramaswamy et al., 2001), a filter
based on max/min expression level ratio was applied. This
measure may fail to filter lowly expressed genes or genes
with only a few extreme outlier values in a few samples and
stable low values in all other samples. For this reason, we
applied a SD filter: the genes with the SD of expression
values across the training samples less than SD threshold
were filtered. Since the datasets contained some negative val-
ues, all expression values were shifted by 400 expression
units. The few remaining negative values were mapped to −1
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Table 1. Classification results of multiple tumor dataset (Ramaswamy et al., 2001) for different values of the filter threshold

Subset ID SD threshold Number of
pre-selected genes

Misclassifications Prediction rate (%)

Leave-one-out Test samples Leave-one-out Test samples

1 1300 707 29 16 80 70
2 1100 905 28 16 81 70
3 1000 1042 27 14 81 74
4 900 1203 26 13 82 76
5 800 1445 25 8 83 85
6 700 1740 26 10 82 83

during the log-transform of the data matrix. The first data-
set (Ramaswamy et al., 2001) contained about 500 duplicated
gene profiles (duplicated genes had names in the dataset with
and without ‘−2’ suffix and identical expression values). The
second copy (with the ‘−2’ suffix) of these genes was removed
from the dataset.

Multiple tumor type classification
The multiple classification dataset (Ramaswamy et al., 2001)
provides measurements for 16 063 probes in 198 tumor
samples representing 14 abundant human cancer classes. The
dataset is split into training and test sets. The training set
contains 144 samples and the test set comprises another
54 samples.

A number of different classification procedures were
applied to this dataset in the original study by Ramaswamy
et al. (2001). The best result was obtained using support vector
machines—78% prediction rate on the test set (12 misclassi-
fications of 54 test samples) and 81% prediction rate on the
training set using a leave-one-out cross-validation procedure
(27 misclassifications of 144 training samples). Several other
classification methods analyzed yielded poor results. Their
prediction rates varied from 67 to 47% depending on the
applied schemes and the corresponding choice of parameters.

We tested MAMA at different filter threshold values
(Table 1). The best results were calculated using a filter
threshold of 800 units (subset no. 5). This filter value provided
maximum prediction rates for both the leave-one-out pro-
cedure on the training set and for the prediction of the test
data set. The outcome was eight misclassifications of 54 test
samples (85%) and 25 misclassifications of 144 training
samples (83%). The detailed analysis of results calculated
for the subset 5 is shown in the Table 2.

To demonstrate that the proposed method identifies func-
tionally related gene groups important to distinguish different
tumors, the following procedure was applied. After con-
structing the ideal features for every tumor type, the genes
involved in the feature were removed from the corresponding
subset. Then new features were calculated from the remain-
ing genes. The prediction power of these newly constructed

Table 2. Classification results for the subset 5 from Table 1

ID Cancer type Training dataset Test dataset
All Correct Misclassified All Correct Misclassified

0 Breast 8 5 3 4 2 2
1 Prostate 8 5 3 6 5 1
2 Lung 8 6 2 4 4 0
3 Colorectal 8 7 1 4 4 0
4 Lymphoma 16 16 0 6 6 0
5 Bladder 8 5 3 3 1 2
6 Melanoma 8 5 3 2 2 0
7 Uterus_Adeno 8 7 1 2 2 0
8 Leukemia 24 24 0 6 6 0
9 Renal 8 5 3 3 3 0

10 Pancreas 8 6 2 3 2 1
11 Ovary 8 5 3 4 3 1
12 Mesothelioma 8 7 1 3 3 0
13 CNS 16 16 0 4 3 1

Total 144 119 25 54 46 8

features drops significantly. For example, for the subset 5 the
prediction rate dropped from 85 to 68% (17 misclassification
out of 54 samples).

The feature profile for the CNS cancer class is shown in
Figure 3, while the functional form of the feature and the genes
involved are presented in Table 3. This feature mainly consists
of genes exhibiting negative multiple correlations [positive αi

in the Equation (3)]. Indeed, there are only 5 out of 23 genes
with negative αi and the absolute values of them are also small
compared with the positive correlations (Table 3).

Analyses of the data presented in Table 3 revealed sev-
eral genes directly related to the functioning of the CNS
system or/and tumor. For example, the APCL protein is a
CNS-specific homologue of the adenomatous polyposis coli
tumor suppressor (Nakagawa et al., 1998). The second gene
GI O60282 (Affymetrix probe setID N98707_at) represents
a neuron-specific member of kinesin family (Nagase et al.,
1998). The involvement of genes number #4, #5, #8, #11,
#13, #15, #20 (calcium/calmodulin-dependent protein kinase
plays an important role in functioning of neurons) and #21 in
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Fig. 3. Feature constructed for CNS tumor type using threshold SD = 800 (subset #5). (A) Training dataset. Samples 129–144 belong to the
CNS tumor. (B) Test dataset. Samples 43–46 belong to the CNS tumor.

Table 3. Genes participating in the CNS tumor feature for subset 5 from Table 1a

Probe set ID Affymetrix gene annotation αj

1∗ RC_D59321_f_at Homo sapiens mRNA for APCL protein, complete cds 0.224
2∗ N98707_at Kinesin family member 5C 0.284
3∗ RC_AA600114_at KIAA0455 gene product 0.300
4∗ C14203_s_at EST: human fetal brain cDNA 5′ end GEN-037E11, mRNA sequence 0.287
5∗ RC_AA165369_at EST: zq49c07.s1 Stratagene hNT neuron (#937233) H.sapiens cDNA clone 633036 3′,

mRNA sequence
0.246

6∗ RC_AA284767_at EST: zt21h07.s1 Soares ovary tumor NbHOT H.sapiens cDNA clone 713821 3′, mRNA
sequence

0.105

7∗ RC_AA478104_at EST: zt89c03.s1 Soares testis NHT H.sapiens cDNA clone 729508 3′, mRNA sequence 0.146
8∗ S40719_s_at Glial fibrillary acidic protein (GFAP) 0.133
9 RC_AA598689_at EST: ae49a08.s1 Stratagene lung carcinoma 937218 H.sapiens cDNA clone 950198 3′,

mRNA sequence
0.116

10 RC_AA235803_i_at EST: zs42g06.s1 Soares NhHMPu S1 H.sapiens cDNA clone 687898 3′, mRNA sequence −0.092
11 M13577_at Myelin basic protein (MBP) 0.024
12 N94832_at EST: yy63f07.r1 H.sapiens cDNA clone 278245 5′ 0.051
13 RC_AA007153_at EST: 13cDNA40-3.seq Soares infant brain 1NIB H.sapiens cDNA clone HY18-44 3′, mRNA

sequence
0.024

14 RC_AA436146_f_at EST: zv22a12.s1 Soares NhHMPu S1 H.sapiens cDNA clone 754366 3′, mRNA sequence 0.015
15∗ H46792_at Fatty acid binding protein 7, brain 0.027
16 HG2815-HT2931_at Myosin, light chain, alkali, smooth muscle (Gb:U02629), non-muscle, Alt. Splice 2 −0.012
17 RC_AA479299_at EST: zv21f04.s1 Soares NhHMPu S1 H.sapiens cDNA clone 754303 3′, mRNA sequence 0.021
18 D31286_at H.sapiens mRNA for smallest subunit of ubiquinol-cytochrome c reductase, complete cds −0.006
19 U60644_at HU-K4 mRNA 0.014
20 RC_AA398221_at EST: zt59e10.s1 Soares testis NHT H.sapiens cDNA clone 726666 3′ similar to

SW:KCCB_MOUSE P28652 Calcium/calmodulin-dependent protein kinase type ii beta
chain; mRNA sequence

0.011

21 M15517_cds5_at TTR gene (prealbumin) extracted from human mutant prealbumin gene directly linked to
familial amyloidotic polyneuropathy (FAP)

0.011

22 D79205_at Ribosomal protein L39 −0.005
23 M29873_s_at Human cytochrome P450-IIB (hIIB3) mRNA, complete cds −0.003

aThe second column specifies Affymetrix ID and the third one indicates Affymetrix annotation for this particular gene. The last column indicates the corresponding coefficient from
Equation (3). Star ‘*’ indicates genes also found for CNR features calculated with other thresholds.

the CNS is suggested by the gene/clone annotation. The gene
#7, GFAP, is involved in the differentiation of glial cells and
astrocytes, a process likely to be misregulated in (undifferen-
tiated) brain tumors. Glycoprotein m6b (gene #12, GPM6B)
is a member of the myelin proteolipid protein (PLP) family

and likely to be involved in neural development. Therefore,
more than half of all genes present in the feature are directly
related to CNS functioning. It is possible that other, not yet
functionally characterized, genes in the feature are involved
in oncogenesis. The annotation of a number of other genes
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Table 4. Classification results for the acute leukemia dataset Golub et al. (1999)

ID SD threshold Number of
pre-selected genes

Misclassifications Prediction rate (%)

Leave-one-out Test samples Leave-one-out Test samples

1 3000 132 2 0 95 100
2 2500 185 1 0 98 100
3 2000 273 3 0 92 100
4 1500 373 2 0 95 100
5 1000 549 2 0 95 100
6 500 1120 2 3 95 92

contains keywords such as ‘tumor’, ‘carcinoma’, etc. indic-
ating their association with (malignant) cancer. However, we
cannot exclude that some other genes may not be functionally
related to CNS tumors. Since each feature differentiates par-
ticular tumor samples from all others, it can incorporate genes
specific for other tumor types, e.g. prostate or ovary tumors.

Acute leukemia
The acute leukemia dataset (Golub et al., 1999) is one of
the most intensively studied. It contains expression profiles
of 7129 probe sets (i.e. genes) from 72 samples collected
from acute leukemia patients. Forty-seven of these samples
were diagnosed as acute lymphoblastic leukemia (ALL) and
the other 25 as acute myeloid leukemia (AML). Following
the experimental setup described in (Golub et al., 1999), the
dataset has been split into a training set of 38 samples (27 ALL
and 11 AML), and a test set of 34 samples (20 ALL and
14 AML).

A number of papers reported results for various procedures
such as support vector machines (SVMs) (Furey et al., 2000),
PCA (Bicciato et al., 2003) and partial least squares (PLS)
(Nguyen and Rocke, 2002). This set can be considered as an
established benchmark for any new microarray classification
procedure. Prediction rates for the test set reported previously
range from 86 to 97% (Bicciato et al., 2003; Furey et al.,
2000; Golub et al., 1999; Nguyen and Rocke, 2002). On the
training set using a leave-one-out cross-validation procedure
some studies achieved 100% prediction accuracy (Nguyen and
Rocke, 2002).

Our results with MAMA compared with the best ones
reported so far. Table 4 summarizes the results for various
filter thresholds. The test set prediction rate was 100% over
a wide range of parameters. The best training set result,
98% of correct predictions, was received on a subset of
185 genes extracted with a SD threshold of 2500 units with
the leave-one-out procedure.

In contrast to all previous studies, MAMA classified sample
#66 (sample 28 of the test data) correctly. Hence, MAMA is
the first method that achieved 100% prediction accuracy on
the test set. The confidence of classification for this sample
was not very high (Fig. 4b), nevertheless, it was correctly

predicted in a wide range of parameters. The calculated feature
(Fig. 4) is very close to the ideal one on the training samples
and demonstrates its high prediction power on the test dataset.
Even though, MAMA does not require genes in the feature to
be differential between classes (see above), we found several
genes involved in tumor growth (e.g. vimentin and thymosin
beta 4) or in lymphocyte activation/function (e.g. lymphotoxin
beta and natural killer cell transcript 4, Table 5).

DISCUSSION
The developed method is inspired by intertwining the con-
cepts of SVM (Vapnik, 1998) and PLS (Wold, 1966). The
linear SVM method, if applied to a two-class separation
problem, maximizes the distance between a hyperplane and
the closest samples from each class. This is done by means
of the following optimization problem: min ‖w2‖ subject to
yi(wxi + b) ≥ 1 for all i, where yi = {−1, 1} are the class
labels. PLS, on the other hand, is a method to construct com-
ponents using linear combinations of predictor variables. PLS
components are constructed to maximize the sample covari-
ance between the response values and a linear combination of
predictor variables. MAMA combines features of both meth-
ods: it maximizes the margin between classes using linear
combinations of predictor variables, i.e. searching among all
possible gene subspaces to find the one where the margin
among classes is maximal. The SVM is a quadratic problem
and, as a consequence, most weights w will differ from zero.
The same is true for PLS, most predictor variables with non-
zero weights participate in the construction of its components.
Contrary to SVM and PLS, the solutions found by MAMA
represent relatively small sets of predictor variables (as a
consequence of the optimization of the linear programming
problem).

Despite the high overall prediction ability of MAMA (85%)
for the test set of (Ramaswamy et al., 2001), some tumor
types such as breast cancer (two out of four or 50% of correct
predictions), bladder (33%) and pancreas (67%), were partic-
ularly poorly predicted. It is interesting that other previously
used classification methods had also considerable difficulties
to predict these tumor types. For example, the performance
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Fig. 4. Feature set constructed from the acute leukemia dataset. (A) Training dataset. Samples 28–38 belong to the AML class. (B) Test
dataset. Samples 21–34 belong to the AML class. The arrow labels sample #66 that was misclassified by previous methods (Golub et al.,
1999; Nguyen and Rocke, 2002).

Table 5. Genes participating in the classification feature from the acute leukemia dataset (subset 1)

Probe set ID Affymetrix gene annotation αj

1 M27891_at CST3 cystatin C (amyloid angiopathy and cerebral
hemorrhage)

1.72

2 L38941_at Ribosomal protein L37 (RPL37) 1.25
3 M24194_at Alpha-tubulin mRNA 1.22
4 M19507_at Myeloperoxidase (MPO) 0.748
5 M28130_rna1_s_at Interleukin 8 (IL8) gene 0.498
6 U01317_cds4_at Delta-globin gene extracted from human beta globin

region on chromosome 11
0.355

7 Z19554_s_at Vimentin (VIM) 0.245
8 M69043_at Major histocompatibility complex enhancer-binding

protein MAD3
0.202

9 U60644_at HU-K4 mRNA 0.139
10 Y00787_s_at Interleukin-8 precursor 0.098
11 X76223_s_at GB DEF = MAL gene exon 4 0.032
12 X03934_at GB DEF = T-cell antigen receptor gene T3-delta −0.15
13 X15183_at 60S ribosomal protein L13 −0.18
14 U89922_s_at Lymphotoxin-beta (LTB) −0.19
15 U05259_rna1_at MB-1 gene −0.23
16 HG4319-HT4589_at Ribosomal Protein L5 −0.36
17 M11722_at Terminal transferase mRNA −0.83

The second column specifies the Affymetrix Probe set ID and the third indicates annotation for this particular gene. The last column indicates the corresponding coefficient from
Equation (3).

of SVM (Ramaswamy et al., 2001) was 50, 67 and 67%
for breast, bladder and pancreas cancers, respectively. An
algorithm developed by Bagirov et al. (2003) gave 25, 33 and
67% for the same tumor types. Such poor performance of clas-
sifiers is clearly inadequate to be used for treatment of patients
in clinics. A simultaneous failure of various classification
schemes can be attributed partially to a higher level of noise in
these particular datasets. This can result from, e.g. complic-
ations with preparation of data samples for these particular
tumor types. At the same time, since there is a signific-
ant variability of predictions across the aforementioned three

methods (e.g. 33, 67 and 33% for bladder cancer) one can
use different weighting methods to agglomerate the classifi-
ers in order to reduce further the overall misclassification.
Therefore, a use of MAMA in combination with the pre-
viously described approaches could potentially lead to the
development of new powerful classification schemes.

MAMA is implemented by means of mathematical
programming using the commercial package Lindo
(http://www.lindo.com). This package provided a high speed
of the analysis. For example, a routine analysis of 2000
genes and 150 samples required less than 5 s on a computer
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Athlon 1800. Taking into account that the speed of lin-
ear mathematical programming scales approximately linearly
with the number of variables (Chvatal, 1983), the LP repres-
ents an invaluable approach for microarray data analysis. The
current version employs weighted voting (Hilliard, 1983) as
the final classification method. However, any other classific-
ation method, especially more complex non-linear methods
such as associative neural networks (Tetko, 2002) can be
attached to MAMA’s feature extraction procedure.

In summary, although several computational schemes have
been applied successfully to multiple tumor type classifica-
tion, most of them use information on single differentially
expressed genes but neglect changes in gene interaction. The
present work addresses this issue. A new classification scheme
called MAMA was described and successfully tested on two
publicly available datasets. The prediction accuracy of this
procedure is high and robust in a wide range of tuning para-
meters. Moreover, the number of identified genes supposed to
be involved in tumor development for every cancer type did
not exceed 20–40.
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