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ABSTRACT
Motivation: Cancer diagnosis using gene expression profiles
requires supervised learning and gene selection methods. Of
the many suggested approaches, the method of emerging
patterns (EPs) has the particular advantage of explicitly mod-
eling interactions among genes, which improves classification
accuracy. However, finding useful (i.e. short and statistically
significant) EP is typically very hard.
Methods: Here we introduce a CART-based approach to dis-
cover EPs in microarray data.The method is based on growing
decision trees from which the EPs are extracted.This approach
combines pattern search with a statistical procedure based
on Fisher’s exact test to assess the significance of each EP.
Subsequently, sample classification based on the inferred EPs
is performed using maximum-likelihood linear discriminant
analysis.
Results: Using simulated data as well as gene expres-
sion data from colon and leukemia cancer experiments we
assessed the performance of our pattern search algorithm
and classification procedure. In the simulations, our method
recovers a large proportion of known EPs while for real data
it is comparable in classification accuracy with three top-
performing alternative classification algorithms. In addition, it
assigns statistical significance to the inferred EPs and allows
to rank the patterns while simultaneously avoiding overfit of
the data. The new approach therefore provides a versatile and
computationally fast tool for elucidating local gene interactions
as well as for classification.
Availability: A computer program written in the statistical
language R implementing the new approach is freely avail-
able from the web page http://www.stat.uni-muenchen.de/
~socher/
Contact: boulesteix@stat.uni-muenchen.de

∗To whom correspondence should be addressed.

INTRODUCTION
In cancer research microarray technology is now routinely
used as a diagnostic tool to classify tumor samples. Because
many genes are expressed differentially according to tumor
type and therefore a large variety of different genetic mark-
ers are available, microarrays are believed to allow finer and
more reliable identification of tumor classes than the usual
clinical methods (Dudoit et al., 2002). On the statistical side,
analysis of gene expression profiles involves the applica-
tion of particular supervised learning schemes. These must
be suited for the typical data situation with a small number
of patients n (=observations) and a large number of genes
p (=variables), the so-called ‘small n large p’ paradigm in
gene expression analysis (West et al., 2000).

While a large body of literature deals with classifica-
tion methods in general and their application to microarray
gene expression data in particular, see Hastie et al. (2001)
and Dudoit et al. (2002) for a first overview, only few
approaches are designed explicitly to consider interaction
among the investigated genes. It is well understood that the
(co-)expression of genes in a cell is governed by a complic-
ated network of regulatory controls. Hence, to achieve optimal
classification accuracy these interdependencies among the
genes clearly need to be taken into account.

Emerging patterns (EPs) are among the simplest examples
for the use of interaction structures in classification. They
were first introduced by Dong and Li (1999) in the context
of a general data mining framework that was subsequently
applied to microarray data (Li and Wong, 2001, 2002). EPs
are expression patterns of the form expr(X1) > a1 ∧
expr(X2) < a2 that have differing frequencies in the con-
sidered classes, where expr(Xi) is the measured expression
level of gene Xi and the ai are boundary constants (that
are eventually inferred from the data). For illustration of
this concept consider Figure 1 where two genes A and B

are employed as markers for two cancer classes Y = 1, 2.
Figure 1a shows an idealized case where class 2 tissue is
fully separated from class 1 tissue according to the (emerging)
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Fig. 1. Examples for possible configurations for two genes with ‘2’
denoting cancer tissue and ‘1’ normal.

pattern expr(A) ≥ a ∧ expr(B) ≥ b. Note that both genes
A and B are necessary to discriminate class 2 from class
1 samples. Similarly, in Figure 1b almost all class 1 tissue
samples can be distinguished from those of class 2 using the
condition expr(C) < c ∧ expr(D) < d. Genes A and B and
genes C and D interact in Figure 1 and this provides an essen-
tial piece of information for classification. Unfortunately, the
inference of interaction patterns among genes is difficult, and
standard approaches for gene selection and classification fre-
quently miss genes involved even in interactions as simple as
in the examples in Figure 1.

Here, we present a simple and versatile statistical approach
for inferring EPs and their use in classification. We first intro-
duce the notion of a statistically relevant EP and subsequently
address the problem of determining suitable (i.e. short and
statistically significant) patterns by suggesting a decision tree
(CART)-based method to discover relevant EPs as well as
a classification scheme to use these EPs for supervised
learning.

The rest of the paper is organized as follows. In the
next section, we present the underlying mathematical prin-
ciples and algorithms of our approach. Subsequently, we
demonstrate the power of the method by applying it to a
number of simulated data sets as well as to two publicly
available ‘benchmark’ microarray data sets. Finally, we dis-
cuss the merits and limitations of our method relative to
other supervised learning methods used in the analysis of
microarray data.

METHODS

Statistical definition of EPs
Emerging patterns are ‘item sets whose support increase sig-
nificantly from one data set D1 to another, D2’ (Dong and Li,
1999). Let n1 = |D1|, n2 = |D2| denote the sample size of
two data sets D1 and D2 and nP ,1 and nP ,2 the counts for a spe-
cific pattern P (e.g. expr(A) ≥ 1.023 ∧ expr(B) ≥ 0.789)
within D1 and D2. The support of pattern P in data set Di

is simply the frequency of occurrence of the pattern, i.e.

Table 1. Examples of EPs

Pattern P suppD1 (P ) (%) suppD2 (P ) (%) rD1D2 (P ) Type

expr(A) ≥ b∩ 0 100 +∞ II
expr(B) ≥ b

expr(C) < c∩ 96.3 4.55 0.047 I
expr(D) < d

For abbreviations see main text. See also Figure 1.

suppDi
(P ) = nP ,i/ni , and the growth rate from D1 to D2

is defined as

rD1D2(P ) = nP ,2/n2

nP ,1/n1
= suppD2(P )

suppD1(P )
. (1)

EPs with a growth rate smaller than one are EPs of type I,
otherwise they are of type II. The order of an EP is the number
of genes k considered in the EP. For the two EPs of order
2 displayed in Figure 1 these properties are summarized in
Table 1.

From the biological point of view, the most interesting EPs
in microarray data are those whose support differs signific-
antly between two investigated data samples. Unfortunately,
it is not straightforward to determine a general cut-off value
for the growth rate that would define a statistically relevant
EP. In Li and Wong (2001, 2002) this problem is circumven-
ted by focusing on EPs with infinite growth rate only. In our
view this is unsatisfactory for two reasons. First, it seems too
restrictive to require infinite growth rate. Second, microarray
data are inherently noisy and thus statistical rather than simple
deterministic modeling is warranted.

We therefore suggest the following alternative definition of
a statistical EP as a pattern of the form

P = expr(g1) � a1 ∧ · · · ∧ expr(gk) � ak , (2)

where the diamond � stands for either ≤ or >, for which the
hypothesis of equal support for P in the two data sets D1 and
D2 is tested and thus can be rejected to a certain confidence
level. This definition requires an associated test statistic. In
our approach we use the deviance and Fisher’s exact test (see
below).

Discovering EPs with CART trees
In order to find EPs with high statistical significance we have
to conduct a search through the space of all possible pat-
terns. For this difficult task Dong and Li (1999) suggested an
enumeration-based algorithm. Instead, we use an approach
based on decision trees.

A decision tree is a statistical model that recursively par-
titions the measurement space (i.e. the gene expression
measurements for all genes in the data set) into subsets by
successive application of a splitting criterion (Breiman et al.,
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1984). In each step, the subset A is divided into two parts,

A1(j , µ) = {x ∈ A|xj ≤ µ} and

A2(j , µ) = {x ∈ A|xj > µ}, (3)

so that A is split by use of one variable, xj , with the split
simply depending on a threshold µ from the range of xj . As
a result from d splittings one obtains subsets of the form

{x|xi1 ≤ µ1} ∩ {x|xi2 > µ2} ∩ · · · ∩ {x|xid ≤ µd}. (4)

The relationship between decision trees and EPs is thus
simple: a pattern of the form of Equation (2) is equivalent
to the agglomerated splitting rules for a leaf in the tree.

For growing the decision tree we employ the variant of the
CART algorithm implemented in the R package tree. As
splitting criterion for the recursive partitioning algorithm we
chose the deviance, a statistic that measures how far the fitted
model p(P |D1) = p(P |D2) deviates from the data. After the
tree is grown, we first use Fisher’s exact test to determine the
maximum order of a pattern, i.e. we test the null-hypothesis
that the growth rate is larger in shorter patterns. Subsequently,
Fisher’s test is also used to evaluate the significance of the pat-
tern, i.e. whether the null-hypothesis p(P |D1) = p(P |D2) of
equal support given two data sets D1 and D2 can be rejected.
Fisher’s test has the advantage that it is exact and thus can
be applied to small leaves (short EPs) whereas other conceiv-
able deviance-based tests are only valid asymptotically. As a
last step, we eliminate the gene involved in the first splitting
and build another CART tree with the remaining variables.
The whole procedure is repeated until no variables (genes)
are left.

It turns out that due to the small number of available obser-
vations in present microarray data almost all patterns of order
greater than two are typically not statistically significant (see
also Results section). Longer EPs also may not be observed
due to data structure. Hence, the search for statistically sig-
nificant EPs can be sped up by restricting to short patterns.
However, provided the number of observations is large enough
to allow longer patterns to be statistically relevant, larger
decision trees will need to be grown.

Classification with EPs
The EPs inferred by our tree-based approach can subsequently
be used for classification as follows. We define binary cov-
ariates based on the m inferred EPs and apply linear discrim-
inant analysis (LDA), a classical supervised learning method
(Hastie et al., 2001), on these new covariates.

Suppose that we have a learning set L and a test set T .
Let nL denote the number of observations in L and nT denote
the number of observations in T . Then we can define two new
data matrices L′ of dimensions (nL×m) and T ′ of dimensions

(nT × m) as follows (m is the number of inferred EPs):

L′(i, j) =




1, if the i-th training observation is in the

j -th EP

0, otherwise,
(5)

T ′(i, j) =
{

1, if the i-th test observation is in the j -th EP

0, otherwise.

(6)

Maximum-likelihood LDA is then employed to predict the
class of observations from T using the matrix L′ as learning
data set and T ′ as test data set.

For discriminant analysis, we make the following distri-
butional assumptions for XT = (X1, . . . , Xm), where the
Xj , j = 1, . . . , m, stand for the new variables:

X|Y = 1 ∼ N2(µ1, λI)

where µ1 is the mean of X in class 1, and (7)

X|Y = 2 ∼ N2(µ2, λI)

where µ2 is the mean of X in class 2, (8)

where I is the identity matrix of dimension (m × m) and λ is
a constant. In particular, the variables are considered to be
independent and to have the same variance λ. This simplified
discriminant analysis method is also known as nearest centroid
approach. Its underlying assumptions are quite strong, never-
theless it offers good performance as it avoids estimating too
many parameters from the sparse number of observations.

Prescreening with empirical distribution function
While comparatively fast, our method for discovering EPs
with trees is still computationally intensive if applied to all
genes in a data set simultaneously. Thus, a prescreening or
gene selection step is needed.

As can be seen from the example in Figure 1, an EP typically
involves genes that do not necessarily discriminate well when
used on their own. Thus selection methods which score the
genes separately can be too restrictive so that some interesting
genes may be left out. On the other hand, in order to be part of
an EP a variable nevertheless has to have some discriminatory
power.

This provides the rationale for a simple heuristic for pre-
screening genes on the basis of the empirical distribution
functions F1 and F2 of the observations from data sets D1

and D2 for each gene. Our selection criterion is whether there
exists a point where the empirical distribution function is less
than α for one class and more than β for the other class, or
more than 1−α for one class and less than 1−β for the other
class, where α is a ‘small parameter’ (say between 0 and 0.1)
and β is a ‘large parameter’ (say between 0.5 and 0.7).
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Fig. 2. Example of the empirical distribution of a gene for class 1
and class 2.

For an example consider Figure 2, which shows the empir-
ical distributions of a gene from the leukemia data set
(Golub et al., 1999). Setting, e.g. α = 0.1 and β = 0.7
it can be seen that this gene will pass the prescreening
process as there exists an interval where the empirical dis-
tribution function for class 1 is smaller than α and the
empirical distribution function for class 2 is larger than β.
For illustration one of the points contained in this interval
is marked in the panel. Provided α is large enough and
β is small enough, this procedure will select most inter-
esting genes. Thus, in Figure 1 genes A, B, C and D
would be selected whereas they may be missed by usual
gene selection approaches if they do not discriminate well
individually.

Recipe for analysis
In summary, our approach to infer EPs consists of the
following simple steps:

(1) Employ the prescreening algorithm to determine a set S
of candidate genes.

(2) Grow a classification tree with the variables from S with
maximal depth two (or any other depth if the number
of observable data points is large).

(3) For each inferred pattern P use Fisher’s exact test (with
significance level pS) to determine whether the cor-
responding second splitting in the tree is relevant, i.e.
whether the pattern has the maximum order 2.

(4) For each pattern P of order 2 employ Fisher’s
exact test (with significance level pG) to assess the

null-hypothesis of equal support of the pattern for D1

and D2.

(5) Select and store the significant pattern(s) and their dom-
inant class (in the case of duplicate patterns predicting
the same class keep only the most significant pattern).

(6) Remove the gene involved in the first splitting of the
tree from the set of variables S. Repeat construction of
decision trees and evaluation of the resulting EP (steps
2–5) until all genes have been eliminated or the desired
number of significant EPs has been retrieved.

As an alternative for removing a single gene in step 6 one
could also eliminate all the genes involved in the discovered
EPs. This makes the algorithm slightly faster, but has the
pitfall that one may miss some potentially interesting EPs.

These steps, along with classification using LDA, have been
implemented in a computer program written in the statistical
language R. The code, complete with examples and explan-
ation of the normalization procedures, can be freely down-
loaded from the web page http://www.stat.uni-muenchen.de/
~socher/

RESULTS
We used a number of simulated data sets to investigate the
power of our approach to infer EPs. Subsequently, we also
tested classification accuracy based on EPs using biological
data sets.

Simulating data
In order to simulate data for p genes and n observations (n1 in
class 1, n2 in class 2) we proceeded as follows. First, we
generated nEP 1 EPs of type I and nEP 2 EPs of type II. Each
pattern involved two genes, for which the boundary thresholds
were randomly drawn from the uniform distribution between
0.25 and 0.75. The type of ordering (‘>’ or ‘<’) was also
randomly chosen. Second, we simulated expression values
in the range [0, 1] according to the following scheme. For
genes not involved in an EP, the expression level was drawn
randomly from the uniform distribution between zero and
one. For genes assigned to an EP, we generated expression
values with probability q within the correct EP boundaries,
and with probability 1 − q outside those boundaries. In our
simulations, the values for the free parameters were fixed at
p = 1000, n = 100, n1 = n2 = 50, nEP 1 = nEP 2 = 50 and
q = 0.95. These settings correspond roughly to typical values
found in real data sets.

Performance of EP discovery method
To evaluate the performance of our CART-based method to
discover EPs from simulated data we introduce two binary
variables for each pair of genes: e, which equals 0 if the pair
does not form an EP and 1 if the pair forms an EP, and d, which
equals 0 if the pair is not detected as an EP by our method and
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1 if it is detected as an EP. For each simulated data matrix,
this allows to compute four summary statistics:

• ned , number of detected EPs;

• nēd , number of non-EP gene pairs which were detected
as EPs;

• ned̄ , number of EPs which were not detected; and

• nēd̄ , number of non-EP gene pairs which were not
detected as EPs.

If an EP of type I or II is diagnosed as EP of type II or I,
respectively, the EP is not considered as detected; rather it
will be counted in ned̄ . The hit rate (HR) is then defined as
the median proportion of discovered EPs among the nEP real
EPs, i.e.

HR = med(ned)

nEP

. (9)

Similarly, the false alarm rate (FAR) is defined as the median
proportion of gene pairs which were discovered as EPs among
the non-EP pairs, i.e.

FAR = med(nēd)

p(p − 1)/2 − nEP

. (10)

Subsequently, we tested our method for prescreening genes
and discovering EPs for 12 different combinations of the
corresponding parameters (α = 0.1, β = 0.3, 0.4, pG =
10−16, 10−18, 10−20, pS = 10−4, 10−8). The parameters α

and β control the prescreening, and pG and pS are the sig-
nificance levels of the two tests used for inferring EPs (see
Methods section). For each setting, we generated 100 data
sets and estimated the HR and the FAR. The results are sum-
marized in Table 2 and the corresponding boxplots are shown
in Figures 3 and 4.

Three important features are revealed in the simulation
study. First, the prescreening parameter β does not seem to
have much impact on both the HR and the FAR. This indicates
that a large β can select most important genes. Second, both
the FAR and the HR decrease when pS decreases. Third, a
small pG parameter leads to a distinct decrease in the FAR but
not of the HR. Therefore, in analysis of a real data set a small
value of the significance level pG should be advantageous,
whereas the other parameters do not seem a particular influ-
ence on the performance of the discovering method. However,
we expect that for real data set the choice of the prescreen-
ing parameter β will be more difficult, in particular for very
noisy data where the the distinction between informative and
uninformative genes is not straightforward.

EP classification accuracy
To test our classification method we randomly divided two
labeled real microarray data sets (colon and leukemia cancer
data, see below) into a learning set L and a test set T , following
the procedure described in Dudoit et al. (2002). We fixed
the size of the test set at 10 observations and repeated the

Table 2. HR and FAR for various parameter combinations and simulated
data

pS pG β HR FAR

10−4 10−16 0.3 0.55 4.1 · 10−5

10−4 10−16 0.4 0.55 4.2 · 10−5

10−4 10−18 0.3 0.55 2.8 · 10−5

10−4 10−18 0.4 0.50 2.8 · 10−5

10−4 10−20 0.3 0.45 2.0 · 10−5

10−4 10−20 0.4 0.45 2.0 · 10−5

10−8 10−16 0.3 0.45 2.9 · 10−5

10−8 10−16 0.4 0.50 2.9 · 10−5

10−8 10−18 0.3 0.45 1.8 · 10−5

10−8 10−18 0.4 0.45 2.0 · 10−5

10−8 10−20 0.3 0.43 1.2 · 10−5

10−8 10−20 0.4 0.40 1.2 · 10−5

pS=10−4 pS=10−8

0.
2

0.
6

pG=10−20, β=0.3

pS=10−4 pS=10−8

0.
2

0.
6
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pS=10−4 pS=10−8

0.
2

0.
6

pG=10−18, β=0.3
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0.
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0.
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0.
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pS=10−4 pS=10−8

0.
2

0.
6

pG=10−16, β=0.4

Fig. 3. Boxplots of the HR for the simulated data sets and for
different parameter combinations.

entire procedure of generating L and T , prescreening genes
and learning 50 times to estimate the expected classification
error. In our study, we fixed the first prescreening parameter
at α = 0.1 and set the confidence level pS = 10−4. The
second prescreening parameter and the confidence level pG

were varied (β = 0.3, . . . , 0.7 and pG = 10−8, . . . , 10−15).
If for at least one partition no EP was found (thus making
the discrimination impossible) we indicate this in the Tables 3
and 4 by marking the respective entry with an asterisk. In this
case, the mean classification error is calculated using only the
partitions that yielded at least one EP.
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Fig. 4. Boxplots of the FAR for the simulated data sets and for
different parameter combinations.
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Fig. 5. Boxplots of the number of identified EPs for the colon
data set.

Figure 5 and Table 3 show the results for the colon cancer
microarray data first investigated in Alon et al. (1999). This
data set contains 2000 genes for 22 normal and 40 cancer
samples. Before applying our EP-based approach for classi-
fication we normalized the data and removed duplicate genes

Table 3. Mean classification error for the colon cancer data set

pG = 10−8 pG = 10−9 pG = 10−10

β = 0.3 0.134 0.128 0.158
β = 0.4 0.138 0.146 0.165∗
β = 0.5 0.146 0.158 0.206∗
β = 0.6 0.192 0.206 0.234∗

LDA 3-NN SVM

10 genes 0.120 0.124 0.118
20 genes 0.122 0.152 0.122
50 genes 0.122 0.164 0.114
100 genes 0.126 0.150 0.122
200 genes 0.128 0.160 0.122

Results for (top) EP-based classification and (bottom) three standard classification
methods (see text).

with identical expression levels across all 62 samples. Table 3
(top) contains the estimated mean error rate for this data set
for different values of pG and β. After prescreening about 700
(for β = 0.3) to 60 (for β = 0.6) genes remained. The overall
classification accuracy increases when either β decreases or
pG increases. The fact that a low β increases the accuracy is
not surprising, since in this case more potentially informative
genes are selected. On the other hand, it is more difficult to
explain the correlation between pG and the mean error rate.
Theoretically, a stronger selection criterion for the EPs should
prevent the selection of irrelevant EPs. However, classifiers
based on a larger number of EPs are also more robust and
hence exhibit a lower error rate. Indeed, the boxplot in Figure 5
shows that for small values of pG the number identified EPs
is very low and very variable, with the consequence of a
decreased classification accuracy.

For further assessment, we investigated the performance of
EP-based classification using a microarray data from leuk-
emia cancer studies (Golub et al., 1999). After preprocessing
as described by Dudoit et al. (2002), we obtained a data matrix
with 3571 genes and 72 samples [47 of tissue type acute
lymphoblastic leukemia (ALL) and 25 of type acute myel-
oid leukemia (AML)]. Table 4 (top) contains the estimated
mean error rate based on 50 random partitions into learning
and test sets L and T for various values of pG and β. After
prescreening about 700 (for β = 0.4) to 100 (for β = 0.7)
genes remained. The overall picture is similar to that of the
colon data set and classification accuracy increases with pG.
However, the parameter β has less of an influence both on
accuracy and the number of identified EPs (Fig. 6).

Comparison with other supervised learning
methods
Using the same study design, we tested three standard classi-
fication methods (Hastie et al., 2001), diagonal LDA (DLDA),
nearest-neighbors with k = 3 (3-NN) and the support vector
machine (SVM) approach. We chose these methods because
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Table 4. Mean classification error for the leukemia cancer data set

pG = 10−13 pG = 10−14 pG = 10−15

β = 0.4 0.028 0.028 0.044
β = 0.5 0.026 0.030 0.046
β = 0.6 0.024 0.030 0.038
β = 0.7 0.026 0.032 0.049∗

LDA 3-NN SVM

10 genes 0.040 0.044 0.048
20 genes 0.030 0.036 0.040
50 genes 0.028 0.040 0.052
100 genes 0.034 0.044 0.042
200 genes 0.032 0.044 0.036

Results for (top) EP-based classification and (bottom) three standard classification
methods (see text).
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0
40

80
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0
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Fig. 6. Boxplots of the number of identified EPs for the leukemia
data set.

DLDA and k-NN were top-performers in a recent compar-
ative study (Dudoit et al., 2002) and SVM is also believed
to be well suited for microarray data (Furey et al., 2000).
For the 3-NN method, we used the R function knn from the
library class and chose the Euclidean distance as distance
metric. For SVMs, we used the functionsvm from the R pack-
age e1071. Since these methods work much better with
few genes, we performed a preliminary gene selection using
the robust Wilcoxon statistic as described by Dettling and
Bühlmann (2003).

The classification accuracy for the three investigated
methods are shown in Table 3 (bottom) for the colon data

set and in Table 4 (bottom) for the leukemia data set. For
the colon data, the results are a bit better than those obtained
using our EP-based approach, while for the leukemia data
set our results are better. Thus, the classification accuracy
using EPs are comparable with those of the best available
methods. However, our method has the added benefit of addi-
tionally identifying dependency structures in the data. This is
a distinct advantage over the usual approaches that only filter
highly differentially expressed genes and classify the samples.

EPs identified in the colon data set
It is instructive to analyze the EPs identified by our CART-
based approach in real microarray data sets. For this purpose,
we ran the prescreening and EP discovery algorithm on the
whole colon cancer data set (Alon et al., 1999), with β = 0.3.
In Table 5 we list all identified EPs with a p-value lower than
10−11, i.e. those that are most significant.

Three different things are worth pointing out. First, the num-
bers of EPs of type I (Table 5, top) and of type II (bottom)
are approximately equal. Note that this balanced situation is
a desirable property for classification. Second, another inter-
esting observation is that not all the genes involved in the
EPs listed in Table 5 are good classifiers individually. For
instance, gene L38810 (involved in the first EP of type II) and
gene T41207 (involved in the sixth EP of type II) are ranked
868 and 533, respectively, according to the Wilcoxon statistic.
This shows it may be too restrictive to select genes for classi-
fication based on an univariate criterion, such as the t-statistic
or the Wilcoxon statistic. Third, some genes such as R55310
and T62947 take part in more than one pattern, indicating that
there is higher-level interaction in the data.

Our EPs inferred for the colon data set are very different
from the EPs given by Li and Wong (2001, 2002). Several reas-
ons can be put forward to explain this discrepancy. First, Li and
Wong looked only for what could be referred as ‘perfect EPs’,
i.e. EPs with infinite growth rate. From the statistical point
of view, it makes sense to consider non-perfect EPs as well,
especially for noisy data like microarray data. Second, our
EPs are shorter (order two), because we focus on statistically
significant and reproducible EPs. In contrast, the EPs found
by Li and Wong are typically very long and thus are likely to
contain highly correlated genes. From a statistical perspect-
ive long EPs are also indicative of overfitting, i.e. some of the
additional genes will eliminate one or two observations for
the training data set but not generally be useful for additional
independent data. Finally, Li and Wong used a very restrictive
prescreening procedure that left only 35 genes. Since EPs are
based on genes interacting with each other, it is questionable
whether such dramatic data elimination is helpful.

DISCUSSION
In this paper, we have introduced a new approach to supervised
learning and exploring interactions between genes based on
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Table 5. Significant EPs identified in the colon data set

Gene 1 Gene2 Freq.
in D1

Freq.
in D2

H06524 ∈ [−0.54, +∞) Z50753 ∈ [0.16, +∞) 1 0.075
H11084 ∈ [−∞, 0.33) Z50753 ∈ [−0.55, +∞) 0.91 0.025
U04953 ∈ [−∞, 0.07) M63391 ∈ [1.17, +∞) 0.86 0
R81330 ∈ [−0.45, +∞) R36977 ∈ [−∞, −0.08) 0.91 0.05
M82919 ∈ [−1.05, +∞) X12369 ∈ [0.49, +∞) 0.82 0
T 51493 ∈ (−∞, −0.77] R64115 ∈ (−∞, 0.58] 0.91 0.05
T 64467 ∈ [0.67, +∞) H72234 ∈ (−∞, −0.10] 0.82 0
U04953 ∈ (−∞, 0.07] R60883 ∈ [−0.38, +∞) 0.91 0.025
T 64467 ∈ [0.67, +∞) T 51493 ∈ (−∞, −0.72] 0.82 0
R55310 ∈ [0.32, +∞) U09564 ∈ (−∞, −0.15] 0.82 0
R55310 ∈ [0.32, +∞) H72965 ∈ (−∞, −0.51] 0.86 0

L38810 ∈ (−∞, 1.48] M76378 ∈ (∞, 1.19] 0 0.9
X87159 ∈ (−∞, 0.68] X63629 ∈ [−0.90, +∞) 0 0.875
D14812 ∈ [0.20, +∞) U25138 ∈ (−∞, −0.44] 0.14 0.975
T 62947 ∈ [−1.06, +∞) M76378 ∈ (−∞, 1.18] 0 0.875
T 62947 ∈ [−1.12, +∞) H20709 ∈ (−∞, 2.80] 0.05 0.925
T 41207 ∈ (−∞, −0.11] T 92451 ∈ (−∞, 1.94] 0.05 0.925
T 71025 ∈ (−∞, 2.19] H08393 ∈ [−1.19, +∞) 0 0.875
M91463 ∈ (−∞, −0.59] R44418 ∈ (−∞, 0.54] 0.14 0.975

Emerging patterns of (top) type I and of (bottom) type II.

the concept of EPs. This tree-based method is computationally
fast and intuitive and also assigns statistical relevance to the
identified patterns. In contrast to previous algorithms, it allows
to rank EPs by statistical criteria and avoids overfitting the
observed data.

We have compared our method using simulated and real
microarray gene expression data with other widely used
approaches for classification. Our approach has classification
accuracy comparable with those of the best methods avail-
able but at the same time additionally infers local interactions
among two or more genes in the form of EPs. Furthermore,
we demonstrated that it is not generally necessary to conduct
strong prescreening and data reduction before classification.
Our investigations also emphasize that there are genes that
are poorly suited for classification on their own, but are
critical in association with other genes because of reciprocal
interactions.

A potential drawback of the present approach is that we have
considered only data sets with two tissue classes. However,
generalization to the multi-class case is possible, and future
version of our algorithm (and program) is planned to be applic-
able to this case. Furthermore, we have chosen suitable values
for the confidence level parameters pS and pG for a given data
set on a heuristic basis. These parameters are linked with the
number of analyzed genes and therefore should be better con-
trolled by a suitable multiple testing procedure (Benjamini and
Hochberg, 1995). Finally, the prescreening step could poten-
tially be improved by employing a multivariate rather than
univariate selection criterion. However, this would increase
substantially the computational costs of the algorithm.

To summarize, our CART-based approach for searching for
EPs in gene expression data offers a versatile new tool both
for elucidating local gene interaction and for classifying tissue
samples. We believe that future development of classification
approaches will even show a tighter integration of higher-
order interaction, such as in the form of genetic networks.
Ultimately, it is the knowledge of these gene interactions that
will help biologist to understand better the function of genes
and the mechanisms of cancer.
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