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ABSTRACT
Motivation: Current Self-Organizing Maps (SOMs) approa-
ches to gene expression pattern clustering require the user to
predefine the number of clusters likely to be expected. Hier-
archical clustering methods used in this area do not provide
unique partitioning of data. We describe an unsupervised
dynamic hierarchical self-organizing approach, which sug-
gests an appropriate number of clusters, to perform class
discovery and marker gene identification in microarray data. In
the process of class discovery, the proposed algorithm identi-
fies corresponding sets of predictor genes that best distinguish
one class from other classes. The approach integrates merits
of hierarchical clustering with robustness against noise known
from self-organizing approaches.
Results: The proposed algorithm applied to DNA microarray
data sets of two types of cancers has demonstrated its ability to
produce the most suitable number of clusters. Further, the cor-
responding marker genes identified through the unsupervised
algorithm also have a strong biological relationship to the spe-
cific cancer class.The algorithm tested on leukemia microarray
data, which contains three leukemia types, was able to determ-
ine three major and one minor cluster. Prediction models built
for the four clusters indicate that the prediction strength for the
smaller cluster is generally low, therefore labelled as uncer-
tain cluster. Further analysis shows that the uncertain cluster
can be subdivided further, and the subdivisions are related
to two of the original clusters. Another test performed using
colon cancer microarray data has automatically derived two
clusters, which is consistent with the number of classes in data
(cancerous and normal).
Availability: JAVA software of dynamic SOM tree algorithm is
available upon request for academic use.
Contact: alhs@mame.mu.oz.au

∗To whom correspondence should be addressed.

Supplementary information: A comparison of rectan-
gular and hexagonal topologies for GSOM is available
from http://www.mame.mu.oz.au/mechatronics/journalinfo/
Hsu 2003supp.pdf

INTRODUCTION
Microarray technologies (Schena et al., 1995; Shalon et al.,
1996) have enabled genomic studies to advance faster than
ever, as it allows expression levels of thousands of genes to be
recorded, monitored and analysed simultaneously under dif-
ferent conditions. However, the vast amount of information
obtained from the DNA microarray requires much computa-
tional aid to interpret and to extract useful information. This
task imposes the need for multivariate analysis where hun-
dreds, if not thousands, of genes are compared at the same
time. One frequently performed task for the study of microar-
ray data is clustering of samples based on expression patterns
of a set of common genes, which are of strong interest to
many authors in terms of cancer class discovery and signific-
ant gene identification (Getz et al., 2000; Golub et al., 1999).
Meaningful discovery of a group of samples that have sim-
ilar genes expression levels can provide insight to therapeutic
and pathogenetic studies. For instance, the conventional way
to identify tumour type is to divide visible abnormal cells
into morphological groups (Triche et al., 1988), but the clus-
tering of samples based on gene expression levels can at
least identify the genes that play an important role in the
classification of tumour types, or even opens the door to under-
standing of the genetic events and mechanisms of tumour
progression.

Two frequently employed methods for clustering gene
expression levels (Tibshirani et al., 1999) are hierarchical
clustering (Sneath and Sokal, 1973) and Self-Organizing
Maps (SOMs) (Kohonen, 1997). Classical hierarchical clus-
tering methods have been reported to have several drawbacks
such as lack of robustness when there is strong presence of
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noise in data. In addition, it may not provide unique cluster-
ing solution, since the clustering result is mostly in the form
of a binary tree that can be segmented in many ways to yield
a given number of clusters. Further, it may depend strongly
on the order of data and consumes exponential time in com-
plete clustering (Tamayo et al., 1999). For the above reasons,
many authors have used self-organizing networks (Herrero
et al., 2001; Kaski, 2001; Tamayo et al., 1999; Toronen et al.,
1999), due to their robustness against noisy data. However, the
SOM algorithm requires the number of clusters to be previ-
ously defined by the user. Even though hierarchical clustering
methods with SOM already exist (Vesanto and Alhoniemi,
2000), the partitioning of clusters is still not uniquely defined
in those methods, as for all the classical hierarchical cluster-
ing methods. The main functionality of producing SOM for
hierarchical clustering is SOM’s data compression property,
where nodes of SOM serve as prototypes (or mean values) for
a number of similar data entries, so that complete clustering
can be achieved in a reasonable time.

In our context of analysis of patients’ gene expression pat-
terns, the focus involves two main aspects—cancer class
discovery and significant gene identification. Cancer class dis-
covery based on clustering of gene expression patterns have
been used in different cancer types by many authors (Alizadeh
et al., 2000; Alon et al., 1999; Ben-Dor et al., 2000; Dudoit
et al., 2000; Getz et al., 2000; Golub et al., 1999; Sharan
and Shamir, 2000). The challenge is not solely in the cluster-
ing quality alone, but also to obtain meaningful and adequate
number of clusters. With meaningful clusters, grouped in
appropriate numbers, identification of the genes that con-
tribute significantly to the differentiation of clusters would
become a simpler task. Golub has adopted the SOM approach
for the class discovery task, but the number of clusters is pre-
defined based on the a priori knowledge of data (Golub et al.,
1999), which may compromise the class discovery capability.
Getz, on the other hand, used a coupled two-way clustering
algorithm to search for clusters of genes that optimally parti-
tion clusters of patients (or samples) (Getz et al., 2000). The
clustering method allows number of clusters to be automat-
ically defined, but the performance remains to be evaluated
by the user community. We propose here a fully unsuper-
vised methodology that uses a combination of dynamic SOM
tree and Growing Self-Organizing Maps (GSOMs) in microar-
ray analysis of class discovery and marker gene identification
tasks. The known class labels of the sample data are only used
to evaluate the performance of the method.

ALGORITHM AND IMPLEMENTATION
Current classifiers and gene selection methods
Recent publications involve two main types of classifiers for
cancer classification. The first type—cluster analysis, is used
for the identification of new or unknown cancer classes using
gene expression profiles (Sneath and Sokal, 1973; Dudoit

et al., 2000; Ben-Dor et al., 2000; Hartuv et al., 2000; Getz
et al., 2000; Golub et al., 1999). The second type, discriminant
analysis (or supervised learning), is used for the classification
of malignancies into known classes (Ramaswamy et al., 2001;
Dudoit et al., 2000; Zhang et al., 2001; Khan et al., 2001).

Gene selection, or otherwise known as feature selection,
has been applied to genomic data to reduce the dimensions
of the data and improve classification accuracy (Campbell
et al., 2001; Guyon et al., 2000; Xing et al., 2001). Other
benefits of gene selection include: reduction of noise in the
data and avoiding over-fitting. Relevant selection methods
include: (a) a correlation metric that measures the relative
class separation produced by the expression values of a gene
(Golub et al., 1999); (b) a log likelihood function for evalu-
ating the suitability of a gene in class discrimination (Keller
et al., 2000); (c) recursive gene elimination (Guyon et al.,
2000).

Modified GSOM with hexagonal topology
A number of structure adaptive algorithms have been proposed
to compensate for the static nature of SOM. Algorithms such
as Growing Cell Structure (GCS) (Fritzke, 1994), Incremental
Growing Grid (IGG) (Blackmore and Miikkulainen, 1995),
Growing Neural Gas (GNG) (Fritzke, 1995) and GSOM
(Alahakoon et al., 2000) all have the capability to attach more
nodes to the network during training. Since the dynamic SOM
tree requires the use of GSOM, we will introduce GSOM in
further detail.

As the original GSOM only supports rectangular topology
(Alahakoon et al., 2000), we have, in this work, modified
GSOM to support hexagonal topology, which is known to
have better topology preservation for SOM (Kohonen, 1997).
This implementation involves several changes to the original
GSOM algorithm, which includes changes in initial grid shape
and new node initialization methods, as detailed later. As a
variant of SOM and inherited from SOM, GSOM has the same
topology structure and weight vector adaptation rules as SOM,
but grows according to its own growing criterion, whereas
SOM is not capable to grow. A parameter of growth, Growth
Threshold (GT), is defined as:

GT = −D × ln(SF)

where D is the dimensionality of data and SF is the user
defined Spread Factor that takes values [0, 1], with 0 rep-
resenting minimum and 1 representing maximum growth.
GSOM is initialized to have one lattice structure as illustrated
in Figure 1.

When the winning node is identified, then an accumu-
lated error counter E of the winning node is updated by the
following rule:

E(t + 1) = E(t) + ‖I − wwinner‖
where I is the input vector and wwinner is the weight vector of
the winning node. If the winning node is on the boundary of
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Fig. 1. Initial GSOM grid for rectangular topology (left) and
hexagonal topology (right).

Fig. 2. (a) Initial GSOM. (b)–(d) All possible growing modes of
hexagonal GSOM. In all cases, each new node will have an existing
node topologically opposite to it.

GSOM (boundary node) and E exceeds GT, growing is initi-
ated on that node to fill the surrounding unoccupied spaces of
the lattice (again, rectangular or hexagonal). Using this grow-
ing phase more nodes can be added to the network to provide
adequate resolution as specified by SF. In the case when E
of the winning node exceeds GT and the winning node is
not a boundary node, E is propagated outwards to the node’s
neighbouring nodes.

Weights of the new nodes will be initialized according to
the equations:

wnew = 2wwinner − wopposite

where wopposite is the weights of the node topologically
opposite to the new node if it exists, otherwise

wnew = wwinner + wother1 − wother2

where wother1 and wother2 are weights of the nodes nearest
to the new node, but are not the winning nodes. However,
for hexagonal topology, there will always be a neighbour of
the winning node that is topologically on the opposite side of
the new node (Fig. 2b–d), therefore only the first equation is
needed to determine weights of the new node.

Dynamic SOM tree
Conventional ways of clustering SOMs have some limita-
tions. Visually identifying clusters on SOM maps by aid of
colour code has limited accuracy, particularly when cluster
boundaries are not well defined. Specifying the number of
nodes to coincide with the number of expected clusters will
require a priori knowledge of the data. The dynamic SOM tree
algorithm is a robust hierarchical clustering application based
on the GSOM that is able to improve the clustering process and
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Fig. 3. Tracing inputs to identify root nodes and construct dynamic
SOM tree.

to assist the analyst in understanding cluster properties (Hsu
et al., 2000). In this paper, we used the modified GSOM with
hexagonal topology, which provides better map and clustering
quality (in supplementary information).

Let us define map resolution by average number of nodes
or neurons per input, so that with the same number of inputs
a larger map will give a higher map resolution. In the case
of GSOM, this can be achieved by specifying a higher SF as
the SF implicitly determines the map resolution. Even though
selecting a larger size for conventional SOM will have a sim-
ilar effect, it also involves the difficulty of first determining
an appropriate size and aspect ratio for the SOM.

To understand and visualize cluster relationships using
GSOM, at least two GSOMs of different map resolutions are
required. From two layers of GSOMs, i.e. one high and one
low SF value GSOM, we are able to visualize cluster separa-
tion and merging by tracing their input mapping. For example,
when 10 inputs that are mapped by two nodes (representing
two clusters) in the high SF GSOM is mapped by only one
node (representing a single cluster) in the low SF GSOM.
This can be interpreted as the single cluster of 10 inputs and
is separated into two clusters as SF increases. In the scenario
of a dynamic SOM tree model, starting with a high SF layer
and then gradually decreasing SF values for subsequent layers
supports the merging of clusters based on map resolution.

A dynamic SOM tree is constructed using input tracing
(Fig. 3). After each layer has been trained and inputs calib-
rated to nodes, the inputs are traced from the highest SF layer
nodes (leaf nodes). A set of root nodes can be identified for
each leaf node and leaf nodes having overlapping root nodes
belong to the same cluster. With such tracing, distinct clusters
having distinct sets of root nodes will form.

The use of a self-organizing network as the medium of the
tree model provides with two additional strengths. First, it
reduces the dimensionality of the input space to lower dimen-
sions. Secondly, the amount of data is compressed when
nodes act as averages of a number of similar data and the
two-dimensional projection approximates probability density
distribution of the input space.
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As a rule of thumb of applying dynamic SOM tree to data,
one can start constructing dynamic SOM tree from very high
SF values (e.g. SF = 0.99 or SF = 0.9) and reduce by 0.1
per layer until terminating criterion is satisfied and then stop
adding more layers. The terminating criterion is satisfied when
the minimum possible resolution (SF = 0) is reached or stable
clusters are formed. The latter is the case when the partitions
of clusters remain unchanged after several additions of GSOM
layers (indicating that the partitions are stable).

Dynamic SOM tree has demonstrated its robustness in
identifying appropriate number of clusters in an unsupervised
way for various data and shown strength in good clustering
quality even compared to well-known clustering algorithms
such as k-means and fuzzy c-means that predefined correct
number of clusters (Hsu and Halgamuge, 2003). The robust-
ness of dynamic SOM tree is attributed to several advantages
inherited from both hierarchical clustering method and the
SOM algorithm.

The number of clusters generated is uniquely defined for a
specified clustering resolution with small variation that may
depend on the initialization method of the GSOM. The res-
olution is interactively set by user to increase or decrease
the number of clusters depending on the suitable hierarch-
ical clustering strategy at the current resolution. This property
is of great value in our context of investigation, since most
current algorithms such as SOM and hierarchical cluster-
ing algorithms do not automatically find the optimal number
of clusters or lack uniquely defined partitioning. With the
use of an algorithm that is able to identify the number of
likely clusters, autonomous class discovery from unlabelled
microarray data (in our case, illness types are considered as
unknown) becomes possible. For example, a group of cancer-
ous patients having particular genes abnormally expressed,
either over-expressed or under-expressed in comparison to
normal patients, can be identified.

Dynamic SOM tree and GSOM combination for
class discovery and marker gene identification
In this approach, we propose to use a combination of the
dynamic SOM tree and a modified Golub’s method for
automatic class discovery and marker gene identification,
respectively. The approach comprises three phases, Class dis-
covery, marker gene identification and partition refinement
(Fig. 4), as detailed later.

In the class discovery, preprocessed gene expression data
is being clustered by dynamic SOM tree to automatically
identify a number of natural partitions in the data set (auto-
matic, as suggested by the algorithm). Under the restriction
that samples are collected from cells related to the cancer
type. For example, since leukemia is a blood related disease,
samples collected by Golub et al. (1999). are bone marrow
cells, which are responsible for producing blood. Such as
to ensure the resulting partitions will have biological mean-
ings. These clusters are then assumed to be actual classes in

Fig. 4. Pseudo-code of Dynamic SOM Tree and GSOM combination
approach.

the data, therefore will be referred to as predicted class (PC)
hereafter.

The second phase searches for the most significant genes,
often referred to as the predictor genes, which contributed pre-
dominantly to the formation of the PCs by means of modified
neighbourhood analysis (Golub et al., 1999). Neighbourhood
analysis involves computing class discrimination scores of all
genes from the PCs, which evaluates a given gene’s suitability
to distinguish two specified PCs and is defined as:

P(g, i, j) = µi(g) − µj (g)

σi(g) + σj (g)

where i and j are the specified PCs and µi(g) is the mean
value, σi(g) is the standard deviation, of the expression level
of geneg for all samples belonging toPCi .P has high absolute
value if the gene is strongly suitable for discriminating class
i from j , strongly negative if in favour of PCj and strongly
positive if in favour of PCi .

There will be CN
2 pair-wise class discrimination scores for

each gene, where N is the number of PCs, but only N − 1
scores that are related to differentiating PCi from the other
PCs will be used. Since the predictor genes will be selected
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Table 1. Sample class discrimination scores as input for GSOM training for
PC2

Score P(g, 2, 1) P (g, 2, 3) . . . P (g, 2, N)

Gene, g 0.83 0.71 . . . 0.87

based on highest average of class discrimination scores, if
all CN

2 scores values are considered together the true class
distinction ability of a gene may be masked when it performs
well to distinguish the specified PC (PCk) but can be averaged
to low value by other irrelevant scores [i.e. P(g, i, j) where
i, j �= k]. Therefore, we propose to analyse class discrimina-
tion score based on a class specific manner that for each PCk ,
only P(g, k, j), where j = [1, N ] and j �= k, will be used to
train a GSOM (step 2 of Fig. 4). An example of input vector
to GSOM is given in Table 1.

Training GSOM from class discrimination scores for each
PC (step 3a) gives the advantages of clustering genes have
similar class discrimination ability and visually provides their
extent of class discrimination strength on the two-dimensional
GSOM map (Fig. 6). Weight vectors of nodes on GSOM, or
any self-organizing neural networks, acts as mean values of a
number of genes with small discrepancy from mean (Herrero
et al., 2001). Therefore, we propose that only the genes rep-
resented by the node with the strongest positive average class
discrimination score (i.e. one versus all other classes) are used
as predictor genes for the specified PC (step 3b). This allows
a variable number of genes to be selected by the algorithm
itself to act as predictor genes and participate in weighted vot-
ing, as opposed to fixed number of predictors used by Golub
et al. Although only one node is being selected on the GSOM,
neighbouring nodes of the selected genes are also well suited
for class discrimination, thus should also be of interest to the
analysts and should not be discarded from presentation.

The third phase of the approach aims at refining the PCs.
Since the predictor genes have been identified in the second
phase, it is necessary to verify that if predictions yielded by
these genes agrees only with the original partitioning. Class
prediction of each sample is determined using weighted voting
(step 4). In weighted voting, when one sample needs to be
associated to a class, each predictor gene for the specific PC
has a vote to decide the sample’s likelihood of being in the PC.
For each of PCi’s predictor gene g, the vote is calculated as:

v(g) = P(g, i, j) ×
[
x(g) − µi(g) + µj (g)

2

]

where i is the PC under question and for all other PCs j , and
x(g) is the expression value of gene g for the sample being
tested. All votes are then summed to give the overall prediction
score, but since the number of predictor genes is variable for
each PC, the prediction score is evaluated by calculating the
average vote per gene. The PC with the highest prediction

score is the PC for this sample obtained from weighted voting
(PCnew). Modified from Golub’s approach, this measure is
found to be reliable and more suitable in this investigation.

Prediction strength (PS) for a sample, a measure that reflects
the confidence of prediction result, is also evaluated in a one-
versus-all fashion:

PS = vfor(i) + ∑
vagainst(j)

vagainst(i) + ∑
vfor(j)

where i is the nominated ‘winning class’ (with strongest vote),
vfor(i) is the number of votes for the class and vagainst(j) is
the number of votes against all other classes (j �= i). The
sum of which indicates the ‘winning strength’ and vagainst(i)

and vfor(j) are summed to give the ‘losing strength’. Low PS
PS < α indicates an uncertain prediction. A value of PS < 0.2
is a good indication that the prediction is uncertain, and is
independent of number of predictors used. If the predictions
from weighted voting disagree with original clustering from
dynamic SOM tree, the predictor gene identification process
needs to be iterated to find new sets of genes that best distin-
guish classes, thus refining the sets of predictor genes as well
as the partitioning of data. Iteration will continue until new
predictions are the same as predictions in previous iteration.

Evaluating clustering results
The quality of clusters can be analysed in terms of purity and
efficiency (Getz et al., 2000) by supervised testing. However,
this is only used to evaluate the clustering quality produced
by the proposed method and is not used in any way to identify
cancer classes or marker genes (described in Fig. 4).

Purity and efficiency of clusters, defined as

purity(s|c) = |s ∩ c|
|s|

efficiency(s|c) = |s ∩ c|
|c|

reflect the extend to which assignment of the samples in class s

corresponds to the samples in cluster c. Purity indicates the
proportion of samples in class s being clustered correctly in
cluster c, so that if all samples of the same class are clustered
into one cluster, purity will be 100%. Efficiency evaluates the
proportion of cluster c is of sample class s, so that if a cluster
contains only samples of the class, the cluster will be 100%
efficient.

SIMULATION RESULTS
Class and marker gene discovery from leukemia
microarray data
The leukemia data, available on and obtained from MITs web-
site (Golub et al., 1999), contains two data sets one for training
the model and the other for testing. The training data set con-
tains microarray data from 38 samples (patients) and each
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Table 2. Summary of quality and contents of PC from level 1 analysis of
leukemia data

Level 1 PC1 PC2 PC3 PC4 Max. purity

ALL-B 16 2 1 0 0.84
ALL-T 1 7 0 0 0.88
AML 1 0 2 8 0.73

Max. eff. 0.89 0.78 0.67 1.0

sample is composed of 7129 genes’ expression levels. The
test data set also contains gene expression levels for the same
7129 genes, but from a difference of 34 samples. All of the
patients were diagnosed to have one of the three Acute Leuk-
emia types, namely Acute Lymphoblastic Leukemia B-Cell
(ALL-B), Acute Lymphoblastic Leukemia T-Cell (ALL-T)
and Acute Myelogenous Leukemia (AML).

The original data sets are raw data therefore requires some
preprocessing. Data are first preprocessed by replacing values
greater than 20 000 with 20 000 and values less than 20 with
20. Second, we apply variation filtering so that only genes with
clear highs and lows in expression pattern are selected. Such
filtering involves removal of genes with difference between
maximum and minimum values (i.e. among all samples) less
than 100 and ratio of maximum over minimum less than three
from the data set. The data is then normalized before using
dynamic SOM tree. After preprocessing, 5855 genes satisfy
the filtering criterions and remain in the data set.

We applied the dynamic SOM tree clustering (i.e. unsuper-
vised training) to the preprocessed train data set containing
the expression patterns of these 5855 genes (step 1 of pseudo-
code) and obtained four clusters/PCs. The PCs are verified
by examining their contents and summarized in Table 2. Note
that the verification is only performed to validate the clus-
tering ability of the dynamic SOM tree and has no effect on
subsequent procedures. PC1, PC2 and PC4 can be identi-
fied as PCs representing 84% of ALL-B, 88% of ALL-T and
73% of AML samples (purity) respectively. PC3, unfortu-
nately consist of one ALL-B and two AML samples, do not
represent the majority of any known class. The efficiencies of
the clusters, PC1 (89%), PC2 (78%), PC3 (67%) and PC4

(100%), are estimated considering the presence of samples
of other classes with respect to its representing class. Initial
clustering results and actual leukemia class of samples can be
interpreted as in (Fig. 5).

It seems that it is easier to separate between ALL-T and
AML patterns using unsupervised learning, whereas it is dif-
ficult to separate ALL-B from AML and ALL-B from ALL-T.
From a biological perspective, it is likely that since B-cell
and myeloid cells all originated from blast cells of the bone
marrow they have more genes expressed in common.

To demonstrate the granularity of the dynamic SOM tree
algorithm, two tests were performed using only ALL-B and

Fig. 5. Topological and clustering relationships between PCs and
actual classes produced by using dynamic SOM tree.

Table 3. Marker genes for diagnosing leukemia at St. Jude Children’s
Research Hospital.

Leukemia type Highly sensitive gene Highly specific gene

ALL-B CD19 Cytopl. CD79a
ALL-T CD7 CD3
AML CD13 or CD33 Cytopl. Myeloperoxidase

only AML data, respectively. Constructing dynamic SOM tree
trained from ALL-B data yielded two clusters. The first cluster
contains 16 samples, 15 of which are the ones in PC1. Similar
result was achieved with AML samples, where two clusters
are formed with eight and three samples. All eight samples
are contained in PC4. The deviation in ALL-B clustering
result with respect to PC1 may be due to various reasons. One
reason could be that the total number of genes remained after
preprocessing the data belonging to a single class is different
from that of the complete data set.

In the next stage of analysis (step 3 of pseudo-code) the
pair-wise correlation values are computed for all genes and a
GSOM is trained for all pair-wise correlations relating to PCi

(i ∈ [1, 4]) (step 3a of pseudo-code). At this stage, genes are
grouped by their strength in distinguishing PCi from the rest
on the GSOM. The highest average distinction node is selected
and all the genes it represents are used as class predictors for
this class (step 3b of pseudo-code).

A list of clinically used marker genes for leukemia dia-
gnosis at St Jude Children’s Research Hospital is provided
in Table 3 (Pui and Evans, 1998). It is interesting to see that
many clinically used marker genes are either in the vicinity of
the predictors on the trained GSOM (Fig. 6) or are included
in our predictor genes. For example, CD7, which is highly
sensitive for T lineage cells of ALL, is included along with
many other T lineage cell specific genes as the predictors for
PC2, which contains mainly ALL-T samples. In the group
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Fig. 6. GSOM trained from class discrimination scores for PC1

showing locations of predictor genes and the marker gene. Darker
shades indicates higher average class discrimination score value.

of predictor genes for PC1 that contains mostly of ALL-B
samples, a few interesting aspects are noted. Firstly, although
CD19, the marker gene for ALL-B, is not included in the
group of predictor genes discovered here, it is located in their
vicinity on the GSOM (in fact, right next to the predictor
node). Secondly, a number of genes that are of significance to
ALL-B are included. Genes like known oncogenes c-MYB,
E2A, principle antileukemic drug target—topoisomerase II
beta, and a few other genes relevant to S-phase cell cycle and
transcription are used as predictor genes for PC1, and the
result is consistent with Golub’s findings.

AML samples that are marked as uncertain [by French–
American–British (FAB) classification] are either of AML
subtype M2 or M5, which have increased frequency of CD13
and CD14 expression (Amirghofran et al., 1999). However,
the number of M2 and M5 samples in AML is relatively small
in the data set, with only two M5, five M2, three M1 and
one M4 samples. Therefore a strong correlation cannot be
made to their clinically known marker genes. The reason why
CD14 was not identified as a predictor gene even though CD14
expresses in 75% of the M5 cases has been investigated. It was
removed in preprocessing due to the fact that it only expressed
in one of the two M5 samples.

Predictions are made and PSs are evaluated for all original
samples (step 4 of pseudo-code). In this application, most of
the samples remain in the same PC after the iteration described
in step 5 of Figure 4 [PC(si)

new = PC(si) as shown in
step 5c].

We revised the predictors (step 5a of the pseudo-code) to
obtain our final predictor genes for level 1. Thus, repeat-
ing steps 2–5 of Figure 4. In the above-described process of
finalising the predictors, it is found that not only the clinic-
ally known marker genes are still present, but also some of
the seemingly less relevant genes are excluded. Also, in the

Table 4. Summary of contents of PCs from level 2 analysis of leukemia data
(step 6 of pseudo-code)

Level 2 PC1 PC2 PC3

ALL-B 3 1 0
ALL-T 0 1 0
AML 0 1 3

case of PC2 predictors, CD3 (a marker gene that expresses
highly specific to ALL-T patients) and the second instance
of CD7 related gene (the first instance is already discovered
as a predictor in previous steps) are included. This shows
that the iteration not only refines the predictor genes, but also
improves them.

However, the analysis of the PS (in step 5b) indicates that
all incorrectly clustered samples, which include all samples
predicted to be in PC3 and a few other incorrectly clustered
samples in other PC, have low PS [PS < α, and α = 0.2
according to Golub et al. (1999)]. Therefore further ana-
lysis is performed on these uncertain samples by repeating
the process, thus refining predictions.

Nine samples at level 2 (four ALL-B, one ALL-T and four
AML samples) that have been marked uncertain at level 1
step 6 (PS < 0.2) are analysed further. Variation filtering
is again applied to remove genes with negligible variation
(max/min < 3) from analysis and only 4132 out of 5855
genes satisfy the criterion. Clustering of uncertain samples
using dynamic SOM tree produces three PCs (Table 4). PC1

contains three ALL-B samples, PC2 contains a mixture of
samples with one sample from each acute leukemia type,
and PC3 contains three AML samples. Predictors for PC1

consist of some interesting genes like CD9 antigen, Inter-
leukin 1 beta and CD63 antigen. CD9 antigen is expressed
during early stage B-cell differentiation or activation. The
main function of Interleukin 1 beta is on B-cell maturation and
proliferation. CD63 antigen and another lysosome-associated
membrane glycoprotein are associated with early stages of
tumour progression and may play a role in growth regula-
tion. Furthermore, in PC3, predictor HOXB2 is also present.
HOXB genes are known to express in acute myelogenous
leukemia and turned off in chronic myelogenous leukemia
(Magli et al., 1997).

Predictions are made for the uncertain samples and PSs are
low (two of three samples have PS < 0.2) for PC2 (step 5c).
The two levels of analysis can be related to each other from two
possible ways. One method is to investigate whether the PCs
analysed in level 2 has strong correlation with any of the PC
in level 1, in terms of expression pattern. The other method
is to examine whether the pathological or pharmacological
functions of the predictor genes in level 2 are comparable to
those of predictors in level 1. In this work, the latter method
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Table 5. Summary of prediction results using test samples

PC1 PC2 PC3 PC4

Level 1
Samples 7 0 22 5
Correct 7 — — 5

Level 2
Samples 6 9 7
Correct 6 — 6

was used. If neither of those methods confirms/supports rela-
tionship between the PCs in level 2 and the PCs in level 1 then
it should be considered as a separate class.

Following the construction of class and predictor models
we can now use the test data set to evaluate prediction of new
samples. Test data set contains 34 acute leukemia samples,
19 of which are ALL-B samples, 14 AML samples and only
one ALL-T sample. Testing was performed using the previ-
ously identified predictor genes from training data and the
results are presented in Table 5. Test results using predictors
found in level 1 of training data predicted only 12 samples
correctly. The remaining 22 samples predicted to be in PC3

have PS < 0.2 and therefore considered for level 2. Uncertain
test samples are then further tested using the predictor genes
found in level 2 in training data. Thirteen more samples are
predicted with PS > 0.2 at level 2, with one sample (the only
ALL-T sample) predicted incorrectly. The remaining samples
(three AML samples and six ALL-B samples) are predicted
to be in PC2 with PS < 0.2. Unfortunately, the training data
did not allow us to go to level 3 and therefore those nine
samples could not be processed further. Altogether, out of
34 test samples, one prediction was incorrect and nine were
uncertain, thus the prediction accuracy is around 71%.

Class discovery of colon cancer microarray data
The colon cancer data is obtained from Weizmann Institute of
Science’s website (Getz et al., 2000). There are 62 samples
in the data set, 40 of which are tumorous samples and 22 nor-
mal samples, diagnosed using two different protocols. The
data is available in a processed form, but follows a different
filtering/selection process to the leukemia data. The data is
filtered such that only the most-expressed 2000 genes are used
and then normalized each sample by dividing the expression
value by the sum of expression values. This filtering process
involves, in our case, a few undesirable characteristics. First,
the 2000 genes with maximum expression levels do not neces-
sarily include marker genes for validating our result. Second,
as the preprocessing method is different to our previously used
leukemia data, it is hard to compare the outcome with the
previous application. However, the data set is still useful to
illustrate class discovery part of the algorithm. There may have
other biological limitations to the colon cancer data. Genes

Table 6. Summary of contents of PCs from level 1 analysis of colon cancer
data

Level 1 PC1 PC2 Max. purity

Tumorous 37 3 0.93
Normal 6 19 0.76

Max. eff. 0.86 0.86

that express abnormally depends on the stage of tumour pro-
gression. Therefore, clustering with gene expression patterns
becomes more difficult. And it is less likely to predict tumor-
ous samples with a fixed set of predictor genes. Different
stages of tumour progression actually have different marker
genes. Mutation of the APC gene occurs in the early stage of
tumour development. As small adenomas progress to larger
forms, mutations in the transforming oncogene ki-ras occur
frequently. In later stages necrosis or inactivation of other
tumour suppressing genes like Deleted in Colorectal Cancer
and p53 occur (Rumsby and Davies, 1995). Unfortunately,
such marker genes are not present in the data set, thus we
are unable to test whether these genes do influence the clus-
tering or demonstrate their correlation to the predictor genes
we used.

The dynamic SOM tree, trained using the colon cancer data
(step 1 of Fig. 4), automatically suggests that two clusters
or PCs are formed and the contents of each cluster are pre-
sented in Table 6. This is a good indication of robustness of
the dynamic SOM tree, since the aim of clustering cancer-
ous samples here is to distinguish between tumorous patients
and normal patients. PC1 contains 43 samples of which 37
tumorous and six normal. PC2 contains 19 samples of which
16 normal and three tumorous. Of the six normal samples
clustered in PC1, three are diagnosed using protocol A, and
all the tumorous samples clustered in PC2 are diagnosed using
protocol B. Perhaps it is possible to infer that protocol A is
a stricter test, such that clustering gene expression data can
identify all tumorous samples diagnosed using it.

Predictor genes are found from GSOMs trained from class
distinction values (steps 2–3). Fourteen samples are marked
as uncertain (again, PS < 0.2) and require next level of ana-
lysis. Out of the 48 samples with strong prediction strength
only four cases (three tumorous and one normal) are predicted
incorrectly. Predictions by weighted voting produces identical
result as clustering results using dynamic SOM tree (step 4),
thus predictors need not be refined (step 5b).

PC1 predictors contain a number of genes that produce
tumour-associated proteins like, for example, thioredoxin and
putative NDP kinase. Compared to normal tissue, over half
of the human primary lung, colon and gastric cancers over-
express thioredoxin. Therefore thioredoxin is often conceived
as an oncogene (Grogan et al., 2000). Putative NDP kinase is
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Table 7. Summary of contents of PCs from level 2 analysis of colon cancer
data

Level 2 PC1 PC2 PC3

Tumorous 4 2 1
Normal 2 4 1

likely to be found in reduced amount in tumour cells of high
metastasis potential (Wang et al., 1993).

Clustering the 14 uncertain samples (step 6 or step 1 of
level 2), again using dynamic SOM tree, came to three clusters
or PCs (Table 7). There are six samples in PC1, 4 tumorous
and two normal; six samples in PC2, four normal and two
tumorous; two samples in PC3, one normal and one tumor-
ous. As we can see that strong distinction between tumorous
and normal samples cannot be made clearly here. This is
also reflected upon the prediction strength, where 6 out of
the 14 samples still have low prediction strengths having two
uncertain samples in each cluster.

In the training set, 52 samples can be predicted to be belong-
ing to a PC that represents the majority of a class. Also, the
maximum purities and efficiencies of the PCs are quite high,
which indicates that a large majority of one class is clustered
in one single cluster.

DISCUSSION
The proposed algorithm automatically (and unsupervised)
identified suitable number of clusters and likely marker genes
for each data set used. In class discovery, the dynamic SOM
tree identified three major and one minor cluster for the leu-
kemia data that has three actual classes, and two clusters
for the colon cancer data that has two actual classes; thus
indicating the automatically identified number of clusters is
appropriate. Likely marker genes identified by the algorithm
for each of the cancer classes have strong relevancy and many
are backed by existing literature. Prediction accuracies for the
training sets are 84% for colon cancer data and 92% for leuk-
emia data. Prediction accuracy for the leukemia test set is 71%.

We understand that a new identified leukemia type known
as Mixed Lineage Leukemia (MLL) was identified after the
leukemia data used in this work has been collected. MLL
has quite distinct expression pattern from known leukemia
types (Armstrong et al., 2002). It is worth analysing further
to determine whether the small cluster, PC3, contains MLL
samples. Since at the time of diagnosis of the patients the MLL
was not identified, therefore they may have been assigned to
one of the known leukemia types.

The simulations were carried out on a P3 800 MHz PC run-
ning Sun’s JAVA VM 1.3. Training GSOMs consumes most
of the analysis time. On an average, training GSOMs using

the two data sets take approximately 21 s for each layer of
the dynamic SOM tree and approximately 220 s form class
discrimination scores.
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