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In mammals, IgG antibodies are transferred from mothers to the offspring. Since these maternal antibodies

result mainly from thymus-dependent immune responses which have undergone immune maturation through

somatic hypermutations, they represent the highest quality of the collective maternal immunological

experience. Maternal antibodies not only confer passive immunity as long as the newborn's immune

system has not fully developed, but also exert an active stimulation as indicated by their regulatory in¯uence

on isotype expression, long-term idiotypic alterations, determination of the adult B and T cell repertoire,

induction of antigen reactive IgM as well as an af®nity enhancement of a proportion of early primary

antibodies. The fact that several of these features can only be induced during limited sensitive periods shortly

after birth is reminiscent of the behavioural imprinting as de®ned by Konrad Lorenz. We therefore propose

that during early ontogeny there is an immunological imprinting phase with characteristics analogous to

behavioural imprinting: (i) the internal imprinting effect is induced by external signals, (ii) in contrast to

normal learning, immunological imprinting is also only possible during certain development phases and (iii) it

is characterised by an (almost) irreversible result. Hence, if particular immunological experiences are only

possible during such sensitive phases, maternal immunoglobulins and consequently the mother's immuno-

logical experience is of prime importance for the start of the ontogenetic development of the immune system.
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On the whole, IgG antibodies are the products of thymus-

dependent immune responses and as such they mirror the

successful interaction of the immune system with the world of

external antigens. This process is characterized by an immune

maturation which is brought about by somatic hypermutation in

the immunoglobulin variable regions and in this way improves

the quality of these humoral effector molecules. In mammals,

IgG antibodies are transferred from the mother to the offspring

either before birth via the placenta and/or after birth with the

colostrum and the milk [1], and even in birds [2, 3] and ®shes [4]

antibodies are transferred to the next generation with the egg yolk.

In mammals as well as in birds, there is overwhelming support for

the view that these maternal antibodies provide passive protection

to the newborns as long as their own immune system has not fully

developed. Hence, maternal immunization can be utilized to

increase the neonatal antibody titers which protect the offspring

against environmental pathogens such as bacterial infections [5±

7], bacterial intoxication [8±10] or a variety of viral diseases [11]

caused for instance by respiratory syncytial virus (RSV) [12],

rotavirus [13], in¯uenza virus [14±16], haemorrhagic fever renal

syndrome virus [17], reovirus [18] or poliovirus [19]. Moreover,

even tumor immunity can be transferred from immunized female

mice to the offspring [20±22]. Collectively, these observations

provide the basis for a maternal vaccination which is already

widely practiced in veterinary medicine [23, 24], and also in

humans, mothers may be vaccinated with the aim to protect their

babies against certain infectious diseases [7±9, 19, 25]. Other

indirect observations also support the conception that maternal

antibodies mediate passive immunity to the F1 generation, e.g. (i)

an insuf®cient amount of maternal antibodies in preterm infants

causes a higher risk of bacterial infections [26], (ii) the frequency

and severity of infections with RSV is inversely correlated with

the titer of the maternal anti-RSV antibodies [12, 27, 28], and (iii)

when children suffer from severe streptococcus B infections it has

been observed that their mothers had reduced IgG1, 2 and 3 serum

levels [29].
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MATERNAL IMMUNIZATION CONFERS MORE

THAN PASSIVE PROTECTION ONLY

Maternal antibodies do not only confer passive protection, but

may in addition in¯uence the developing immune system of the

newborn in such a way that antigen-induced immune responses

may seemingly be suppressed or can be enhanced. Since the

1940s until present, it has been reported that antibody responses at

an early age in the offspring of immunized mothers are suppressed

and that this suppression is mediated by passively acquired

maternal antibodies [30±36]. However, this suppression is

transient in nature and affects apparently mainly the antibody

response [31, 33, 37], while for instance the generation of delayed

type hypersensitivity (DTH) effector cells and memory cells is not

impaired, thus enabling normal secondary responses [38]. Con-

sequently, this misleading suppression mediated by the maternal

antibodies can be overcome by a second immunization [39] or by

increasing the antigen dose of the primary vaccination [40].

More importantly, it has been observed that maternal immu-

nization, e.g. with either pneumococcal polysaccharide [41],

Plasmodium berghei [42] or DNA [43] can cause a signi®cantly

stronger response to the respective antigens in the offspring.

The latter investigation led to the conclusion that the enhanced

anti-DNA immune response in the offspring was most likely

mediated by maternal antibodies, while the involvement of

carrier protein, nucleoprotein and adjuvant transferred from the

immunized dams could be excluded [44]. The authors even

denied the possibility that immune complexes formed with

residual undetectable maternal antibodies might have been

responsible for the enhanced anti-DNA response [44]. Moreover,

it has been observed that the postnatal transfer of a neutralizing

monoclonal antibody which reacted with the F-glycoprotein (F-

gp) of respiratory syncytial virus, sensitized the offspring in such

a way that a primary immunization after weaning with the

puri®ed RSV F-gp resulted in a secondary type of immune

response with the formation of virus-neutralizing antibodies

[45]. This indicates that maternal antibodies are able to exert

an active stimulatory in¯uence on the nascent immune system of

the newborns. Interestingly, even a carrier-priming of female

mice with bovine serum albumin (BSA) mediated a typical

secondary antihapten immune response in the offspring when

these were ®rst primed with the hapten 2,4-dinitrophenyl (DNP)

coupled to the noncrossreactive carrier chicken gamma globulin

(DNP-CGG) at an age of 3 months, and received a challenge with

DNP-BSA 6 weeks later [46]. This allowed the conclusion that

the carrier protein sensitivity was transferred from the mother to

the fetus.

The observed immunomodulatory effects of a maternal immu-

nization have mainly been attributed to an active pre- or neonatal

immunization by maternally derived antigen [8, 9, 47]. However,

this assumption is dif®cult to reconcile with the observations that

®rstly, the maternal effects are generally long-lasting and are still

operative when maternal antibodies are not any longer detectable

in the serum [46±48], secondly when an antigen-free, maternally

derived monoclonal anti-F-gp antibody primed the young mice

for a secondary immune response [45] and thirdly when maternal

immunization may lead to the appearance of only immuno-

globulin IgM antibodies without a switch to immunoglobulin

IgG [49]. Hence, proceeding from the assumption that the

maternal immune system is indeed able to in¯uence the immuno-

logical capacity in the offspring, the question arises whether this

can really only be achieved by maternally derived antigen itself.

If so, any experimentally induced primary antigenic stimulus in

the offspring of immunized dams will in fact give rise to a

secondary immune response. Alternatively, one has to ask

whether antigen-free maternal antibodies ÿ like anti-F-gp [45]

or anti-DNA [44] ÿ can induce a preactivation in the nascent

immune system of the newborn, altering thereby the starting

conditions for the ®rst encounter of external antigens. Evidently,

this question can only be answered from experimental systems in

which antigen is not involved.

MATERNAL ANTIBODIES PER SE CAN

REGULATE THE ISOTYPE EXPRESSION

DURING AN IMMUNE RESPONSE

Earlier investigations by Jarrett and coworkers in rats have

shown that a maternal immunization with ovalbumin and the

subsequent transfer of maternal antibodies to the offspring

inhibited the induction of an immunoglobulin IgE immune

response [48, 50] and circumstantial evidence suggested that

this IgE-suppression was solely mediated by maternal IgG

antibodies and not by transferred antigen [48, 51]. Again, this

IgE-suppression lasted much longer than maternal IgG antibo-

dies could be detected in the sera of the pups [48]. We have

repeated such experiments in CBA/J mice with phospholipase A2

(PLA2) as antigen [52] and could con®rm the main results

obtained by Jarrett and coworkers. Moreover, it could be demon-

strated that a mixture of 10 or even one single monoclonal

maternally derived IgG±anti-PLA2 antibody was equally effec-

tive in mediating an IgE-suppression. This formally proves that

antigen is not involved in the process and that antibodies as such

are able to in¯uence the newborn's immune system and in this

case to modulate the balance of expressed isotypes during the

immune response in the offspring. These data seem to correlate

with the ®nding that the transmission of atopy, as detected by

high IgE serum levels, is linked to the marker D11S97 at

chromosome 11q and is only detectable through the maternal

line [53]. The authors concluded that this `pattern of inheritance

is consistent either with paternal genomic imprinting or with

maternal modi®cation of developing immune responses'.

CLONAL SELECTION BY MATERNALLY

DERIVED IDIOTYPES OR ANTI-IDIOTYPES

Immunoglobulins as antigen receptors of B cells form a network

of interacting idiotypes [54] which is functionally connected to

the T cell compartment [55]. Hence, in the context of the

idiotypic network, immunoglobulins are information-bearing

molecules which function as internal network antigens and, in
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this context, it had to be expected that maternal antibodies per se

will in¯uence the clonal development of the nascent immune

system of the newborn. Indeed, the regulation of idiotype or anti-

idiotype expression by maternal in¯uence has extensively been

investigated.

The induction of an anti-idiotypic response or the administra-

tion of preformed anti-idiotypic antibodies mostly leads to

suppression of that idiotype and such a suppression may espe-

cially be long-lasting when the anti-idiotypic response is induced

in newborns shortly after birth [56±58] or the corresponding

idiotype may even be permanently lost [59, 60]. When anti-

idiotypic antibodies are actively induced or injected into preg-

nant mothers and reach the fetus via the maternal route before

and/or after birth, they also suppress the corresponding idiotype

in the offspring [61, 62]. Interestingly, if an anti-idiotypic

manipulation either by direct immunization of the neonate or

via the mother is directed towards a highly connected idiotype

expressed by multispeci®c, cross-reactive IgM antibodies, a

long-lasting severe disturbance of the entire repertoire of that

animal may occur [60, 63].

Moreover, several experiments have shown that even the

transfer of idiotypes or anti-idiotypes solely after birth with the

colostrum and milk is suf®cient to mediate idiotypic interaction

and/or protection against microbial infection from the mother to

the offspring [5, 15, 61, 64, 65] demonstrating thereby the

importance of natural postnatal rearing. From such experiments

it has been concluded that not only the experimentally induced

but also naturally occurring antibodies of the mother can in¯u-

ence the development of the newborns' immune system and the

generation of the antibody repertoire [60, 63, 65±69]. In the

present context, it is important to stress that these earlier experi-

ments have demonstrated that not only a particular immune

response, but also the development of the whole B cell repertoire

can be in¯uenced by maternally derived antibodies without the

participation of antigen. The only sensible way to explain these

data is the acknowledgement of idiotypic-anti±idiotypic interac-

tions, outlined as the idiotypic network theory [54], despite the

appraisal of a senior immunologist that `there isn't any pay dirt'

in that concept and the promise of another colleague that `there

are about 10 other ways' for an explanation which `make more

sense' [70]. To our knowledge, these alternative explanations

have not been presented so far. Admittedly, however, the

biological relevance/signi®cance of those maternally induced

clonal alterations induced by various idiotypic manipulations

remained unclear.

MATERNAL IMMUNOLOGICAL EXPERIENCE

IMPROVES THE QUALITY OF THE

PREIMMUNE REPERTOIRE

The validity of the idiotypic network theory can best be demon-

strated by the fact that even vaccinations with anti-idiotypic

antisera [71] or monoclonal anti-idiotypic antibodies [72, 73] or

by maternal vaccination with recombinant anti-idiotypes [74]

(see also [75]), i.e. without the involvement of antigen or

antigen-binding antibodies, are able to confer protection against

microbial infections or tumor formation. The ®rst hint for us that

the maternally induced idiotypic activation in the newborn's

immune system causes more than a clonal alteration of unknown

relevance was provided by the ®ndings of Okamoto and collea-

gues mentioned above [45], by showing that the postnatal

transfer of an idiotype caused an immune response with second-

ary kinetics when the young mice were challenged with the

corresponding antigen for the ®rst time. These data clearly

exemplify that the offspring can derive a bene®t from the

maternal immunological experience. Hence, we hypothesized

that ®rst, antibodies which are generated by somatic mutations

during antigen-induced immune responses in the course of

ontogeny can be regarded as single steps of an environmentally

induced immunological learning process of the mother, secondly

that this accumulated maternal immunological knowledge is

passed on to the next generation resulting in an education of

the nascent immune system of the newborn and thirdly that

maternal antibodies will not only bring about an irrelevant

alteration of the idiotypic composition of the immune response

in the offspring, but will induce advantageous effects, e.g. with

respect to immunity against infectious diseases.

To address this possibility, we studied the immunomodulatory

impact of maternal antibodies. We suspected that maternal

effects could best be studied in the well characterized primary

immune response to the hapten 2-phenyloxazolone (phOx)

coupled to the carrier chicken serum albumen (CSA) when this

response is induced at an age when maternal antibodies were not

any longer detectable in the sera of the young mice plus a further

waiting-period of 4±8 weeks. During the analysis of the in¯u-

ence of a primary, secondary or tertiary immune response of

BALB/c females to phOx-CSA on the primary humoral immune

response to the same antigen in the offspring, an alteration of the

kinetics, the quantity and the quality of the antiphOx antibody

production was observed [76, 77].

The ®rst striking result was the production of IgM-antiphOx

antibodies in the offspring of secondarily immunized dams even

when the F1 animals themselves were not immunized [76]. This

observation has been con®rmed by others [78].

A small amount of tertiary antiphOx antibodies could also be

transferred via the F1 females to the F2 generation. When these

F2 mice, which obtained antiphOx antibodies from their grand-

mothers, received a primary immunization with phOx-CSA, half

of them developed an immune response as normal mice, but in

the other half maximal antibody titers of about 7 ´ 105 were

reached which in normal mice (born to nonimmunized dams) can

only be observed in the course of a secondary immune response

[76].

When high af®nity tertiary or quaternary antiphOx antibodies,

either as a result of an active immunization or injected as

antigen-free monoclonal antibodies, were transferred from the

mother or even the grandmother, the expression of the normally

dominant IdOx1 was rendered exceedingly variable, i.e. in most

mice the amount of IdOx1 was reduced, but in some mice the

proportion of the IdOx1 was even increased to 90±95%. This is in
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contrast to normal mice, in which the IdOx1 is dominant and

constitutes about 75% of the day 7 primary antibodies with little

deviation between different animals [77].

Among the early primary antiphOx antibodies in normal mice,

those of the IdOx1 are of highest af®nity [79]. In contrast, in the

offspring of tertiary immunized dams, half of the non-IdOxl

antibodies exhibited a strong increase in af®nity, being either

identical (60%) or even 7±25 times higher (40%) than IdOx1

antibodies [77].

This af®nity enhancement of half of the non-IdOx1 antibodies

seemed to results from (i) the expression of new and nonmutated VL

genes (ii) VH/VL gene combinations which have so far not been

observed in the antiphOx immune response, and (iii) the expression

of nonmutated VH/VL gene products which normally occur during

immune maturation of the secondary or tertiary immune response.

These results demonstrated for the ®rst time that maternal

immunological experience in the form of high af®nity, tertiary

antibodies is not only able to cause an alteration of the antigen-

inducible B cell repertoire of unknown relevance, but can

in¯uence the nascent immune system in a biologically mean-

ingful way by enhancing the quality of the early primary

antibodies, thus improving the starting conditions of the

immune system in the offspring. This is reminiscent of obser-

vations which described the transfer/inheritance to the next

generation of phenotypic characters which are not encoded

in the germline, but induced through environmental factors and

thus prove a `maternal guidance of nongenetic contributions'

[80]. Furthermore, our experiments showed that maternal factors

can be regarded as the ®rst encounter initiating a life-long

educational process of the immune system [81].

EARLY ONTOGENY IS ALSO FOR THE

IMMUNE SYSTEM AN EXCEPTIONALLY

SENSITIVE PHASE

The early phases of ontogeny are of great importance for all

aspects of the development of an individual. This can be

exampli®ed by the learning of a language. While children can

easily learn one or more languages during the ®rst years of life,

the capacity of the central nervous system in this respect rapidly

declines and ends with puberty [82]. The same principle seems to

hold true for the development of the immune system. There are a

few reports which help to evaluate the importance of the early

ontogeny as an exceptionally sensitive phase. First it has repeat-

edly been shown, that idiotypic-anti±idiotypic interactions have

long-lasting or permanent in¯uences when induced around birth,

but are transient in nature when activated during adulthood [56±

60]. Second, moreover, since particular idiotypic interactions are

only operative during certain ®xed periods early in life, but exert

a determinative in¯uence on the composition of the adult

repertoire, the concept of `developmental windows' has been

put forward [68, 83, 84]. Third, similar conclusions have been

reached from the work of Coutinho and his group by showing

that an immunoglobulin-dependent selection of the T-cell reper-

toire only operates during the ®rst 3 weeks on life [85]. In

analogy to our results [77], they also observed that this effect

could be passed on to the F2 generation. Fourth, Haba and

Nisonoff have studied the conditions for the induction of IgE

immune responses and found that a long-term suppression of IgE

synthesis could only be achieved when syngeneic IgE was admi-

nistered during a short period from 2 to 11 days of life [86, 87].

Fifth, these results are in line with the conception that in¯uences in

early life are important for the appearance of allergic diseases in

later life [88, 89] and that the transmission of atopy is only

detectable through the maternal line (see above and [53]).

These immunological characteristics are reminiscent of

experiments which have demonstrated a behavioral imprinting

as de®ned by Konrad Lorenz [90]. In connection with his

®ndings and the general concept of imprinting [91] we would

like to propose that during the early ontogenetic development of

the immune system, there is an imprinting phase aÁ la Konrad

Lorenz, so to speak. In full analogy to the behavioral imprinting,

this immunological imprinting seems to be characterized by the

following features: ®rst, the internal imprinting effect is induced

by external signals, second, in contrast to normal learning,

immunological imprinting is also only possible during certain

developmental phases and third, it is characterized by an (almost)

irreversible result. This means that particular immunological

experiences must be made during appropriate sensitive phases

and can not be made up leeway. Hence, maternal immunoglobulins

as well as a variety of growth factors present in colostrum and milk

provide the ®rst immunologically relevant environment for the

fetus and this environment is of particular importance for the

start of the ontogenetic development of the immune system.
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