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Mammalian Toll-like receptors
Shizuo Akira

Toll-like receptors (TLRs) are essential in the host defense
against microbial pathogens. Individual TLRs recognize distinct
structural components of pathogens and evoke inflammatory
responses. Recent evidence indicates that TLRs recognize not
only bacteria and fungi but also viruses. The molecular
mechanisms by which TLRs induce differential gene expression
are now beginning to be clarified.
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Abbreviations

DC dendritic cell

HSP heat-shock protein

IFN interferon

IL interleukin

IRAK IL-1 receptor-associated kinase
LPS lipopolysaccharide

MAP mitogen-activated protein

NF-xB nuclear factor kB

NOD nucleotide-binding oligomerization domain
PAMP pathogen-associated molecular pattern
TIR Toll/IL-1 receptor

TIRAP TIR domain-containing adapter protein
TLR Toll-like receptor

TNF tumor necrosis factor

Introduction

The innate immune system recognizes conserved motifs
in pathogens termed ‘pathogen-associated molecular pat-
terns’ (PAMPs; [1]). Toll-like receptors (TLRs) have an
essential role in the innate recognition of PAMPs and in
triggering acquired immunity in higher organisms [2,3].
So far, ten mammalian Toll-like receptors (TLRI1-
TLLR10) have been identified. The TLR family is char-
acterized by the presence of an extracellular domain
containing leucine-rich repeats and a cytoplasmic Toll/
IL-1 receptor (TIR) domain similar to that of the inter-
leukin 1 (IL--1) receptor family. These receptor families
function through the same signaling molecules, including
MyD88, IL.-1 receptor-associated kinase (IRAK), TNF

receptor associated factor (TRAF) 6, mitogen-activated
protein (MAP) kinases and nuclear factor (NF)-kB.

Individual TLRs recognize distinct structural compo-
nents of pathogens (Figure 1). In this review, I discuss
the function and signaling pathways of the mammalian
TLR family, focusing on recent progress in this area.

Recognition of PAMPs by mammalian
Toll-like receptors

TLR4

Lipopolysaccharide (LLPS), a component of the outer
membranes of Gram-negative bacteria, is a potent acti-
vator of macrophages and a causal agent of endotoxin
shock. After being released into the bloodstream, LLPS is
captured immediately by LLPS-binding protein, a specific
lipid transfer protein that delivers LPS to CD14 present
on the surfaces of mononuclear phagocytes. CD14 lacks a
transmembrane domain and so is incapable of transducing
signals, which suggests that other molecules must be
responsible for LPS signaling.

Both the positional cloning of the locus responsible for
LPS hyporesponsiveness in C3H/He] mice and the gen-
eration of TLLR4 knockout mice have shown that TLLR4 is
essential for LPS signaling [4,5]. In addition, the inter-
action of LLPS with TLR4 requires another molecule,
MD-2, which associates with the extracellular domain
of TLLR4 [6]. Knockout mice have provided evidence that
MD-2 is indispensable for and unique to TLLR4 signaling;
that is, MD-2 does not effect the response to peptidogly-
can (a TLR2 ligand) or to DNA-containing CpG di-
nucleotides (a TLR9Y ligand; [7°]).

Some mammalian species discriminate between different
LPS structures. The lipid A analog lipid IVa is a potent
antagonist in human cells but acts as an LPS mimetic in
mouse cells. Another TLR4 ligand, taxol, is a plant-
derived anticancer reagent that mimics the action of
LPS in mice but not in humans. In addition, penta-
acylated LPS stimulates murine but not human cells.
These differences between humans and mice have been
attributed to differences between the human and mouse
TLR4 and/or MD-2 molecule [8-10].

Despite these data, there is no evidence for the direct
binding of LLPS to TLR4. Recently, a model has been
proposed in which LPS is recognized by a cluster of
receptors associated with lipid rafts [11]. The proteins
CD14, heat-shock protein (HSP)70 and HSP90 are con-
stitutively found in lipid rafts, whereas TLR4, the
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Ligands recognized by TLRs. It is currently thought that TLR3, TLR4,
TLR5, TLR7 and TLR9 deliver their signals by forming homodimers after
interacting with their ligands, although there is no direct evidence

for this. For TLR2, ligands are recognized by a heterodimer of TLR2 and
another TLR (TLR1, TLR6 and probably TLR10). For TLR4, another
secreted molecule, MD-2, is also required for ligand recognition.

chemokine receptor CXCR4 and growth differentiation
factor 5 (GDF5) are recruited to lipid rafts after stimula-
tion with LPS. This suggests that LPS stimulation
generates the dynamic association of several receptors
within lipid rafts. But whether the LLPS-induced forma-
tion of a large receptor complex is linked to ligand-
specific recognition of LPS remains unclear, as do the
consequent cellular responses.

TLR2 (TLR1, TLR6)

TLR2 recognizes many different microbial components,
including peptidoglycan from Gram-positive bacteria
such as Staphylococcus aureus, lipoproteins and lipopep-
tides from several bacteria, glycophosphatidylinositol

Figure 2

anchors from Trypanosoma cruzi, lipoarabinomannan from
Mycobacterium tuberculosis, porins from Neisseria meningi-
tides, and the yeast cell-wall component zymosan.

Aderem and co-workers [12] first suggested the possibility
that TLR2 ligands are recognized by heterodimers
formed between TLR2 and other TLRs. This idea has
been confirmed by analyses of knockout mice [13,14°]:
neither TLR2-deficient nor TLR6-deficient macro-
phages respond to the synthetic mycoplasmal lipopeptide
MALP-2, whereas TLR6-deficient but not TLR2-defi-
cient macrophages respond normally to another synthetic
lipopeptide PAM3CSK4.

All lipoproteins contain a lipolyated amino-terminal resi-
due, and it is this lipid moiety that is responsible for their
immunostimulatory activitiecs. PAM3CSK4 contains a
triacylated cysteine residue at its amino terminus,
whereas the cysteine residue in MALP-2 is only diacy-
lated. Replacement of the lipid portion of MALP-2 with
that of PAM3CSK4 results in the activation of TLR6-
deficient macrophages, showing that T1L.R6 can discrimi-
nate between the subtle differences in the lipid portions
of these lipopeptides (O Takeuchi, S Akira, unpublished
data, [54]). Recent studies have shown that triacylated lipo-
proteins or lipopeptides, such as the 19 kDa lipoproteins
of M. tuberculosis, the outer-surface lipoprotein of spiro-
chete Borrelia burgdorferi, PAM3CSK4 and N-PAM-S-
Lau,CSK, are preferentially recognized by a heterodimer
formed between TLR2 and TLR1 (Figure 2; [14°,15°%]).

TLR5

Flagellin is a 55 kDa monomer obtained from bacterial
flagella, polymeric rod-like appendages extending from
the outer membrane of Gram-negative bacteria that pro-
pel the organisms through their aqueous environment.
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Recognition of TLR2 ligands by heterodimers. In cooperation with TLR2, TLR1 and TLR6 recognize the structural difference between bacterial
lipopeptide and mycoplasmal lipopeptide. Peptidoglycan is likely to be recognized by a TLR2 homodimer or a heterodimer of TLR2 and an

unknown TLR.
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Flagellin is also a potent pro-inflammatory factor, whose
signaling has been shown to be mediated through TLRS5
[16].

TLRS is expressed on the basolateral, but not apical,
surface of intestinal epithelia [17]. Therefore, flagellin
activates pro-inflammatory gene expression only if it
crosses intestinal epithelia and contacts the basolateral
membrane, which may explain in part why commensal
microbes can secrete flagellin into the intestinal lumen
without inducing inflammation.

TLR9

TLLR9 is essential for responses to bacterial DNA (and
viral DNA) and synthetic oligodeoxynucleotides contain-
ing unmethylated CpG dinucleotides (CpG DNA).
These oligonucleotides have been shown to stimulate
the proliferation of B cells and to activate macrophages
and dendritic cells (DCs; [18]). The optimal immunosti-
mulatory CpG DNA motifs differ between mouse and
human; this difference is due to amino acid sequence
differences between the extracellular regions of the
human and mouse TLR9s [19].

TLR3

Viral replication within infected cells often results in the
generation of double-stranded RNA that can stimulate
immune cells. Recently, TLLR3-deficient mice have been
shown to have reduced responses to double-stranded
RNA, as well as to the viral RNA mimic poly(I-C),
suggesting that TLLR3 is involved in the recognition of
double-stranded RNA [20°°].

TLR7

TLR7 recognizes several types of imidazoquinoline
[21°°]. Imiquimod (also known as Aldara, R-837, S-
26308) and R-848 (also known as resiquimod, S-28463)
are low-molecular mass compounds of the imidazoquino-
line family that possess potent antiviral and antitumor
properties. The activity of imiquimod is mainly depen-
dent on its ability to induce cytokines, including IFN-a
and 1L.-12.

Topical imiquimod therapy is now approved for the
treatment of external genital and perianal warts caused
by papilloma virus infection. R-848 is a more potent
analog of imiquimod currently under development. In
addition, it has been shown that TLLR7 recognizes other
synthetic chemicals, including loxoribine and broprimine
(H Hemmi, S Akira, unpublished data; Figure 3).

Heat-shock proteins and innate immune
responses

Heat-shock proteins (HSPs) associate with several differ-
ent peptides in cells and function as chaperones. In
addition, HSPs themselves stimulate immune cells to
secrete pro-inflammatory cytokines. Recent studies have
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Structures of imidazoquinolines, loxoribine and bropirimine. (a)
Imiquimod and (b) R-848 are members of a novel group of low molecular
mass compounds, the imidazoquinolinamines. They have antiviral and
antitumor activity as inducers of IFN-o and other cytokines in vivo.
Imiquimod is administered as a 5% cream (Aldara) and is currently used
to treat anogenital warts. (c) Loxoribine (7-allyl-8-oxoguanosine)
enhances the activity of natural killer cells and the proliferation of B
lymphocytes, and induces the production of IFNs and cytokines. (d)
Bropirimine (2-amin-5-bromo-6-phenyl-4(3)-pyrimidinone) is an orally
active immunomodulator that increases endogenous amounts of IFN-o
and other cytokines, and is used clinically against in situ carcinomas in
the bladder.

indicated that HSPs, in particular HSP60, HSP70, HSP90
and GP96, activate macrophages and DCs through TLR2
and TLLR4 [22], although there is some concern about the
possibility of endotoxin contamination in these studies.
Although many publications have ruled out this possibi-
lity, other reports have provided evidence that suggests
that HSPs do not function as direct activators of the innate
immune system [22].

Several reports have shown that TLR4 recognizes frag-
ments of the proteoglycan heparan sulfate, the extra
domain A of cellular fibronectin, hyaluronan oligosacchar-
ides and fibrinogen, all of which are generated during the
course of inflammation and tissue damage [23-26].
Although this finding is very attractive for supporting
the ‘danger theory of immune activation’ proposed by
Matzinger [27], there remains the possibility that these
endogenous ligands might also be contaminated with a
true TLLR4 ligand such as LPS.

Signal initiation sites and trafficking

of TLRs

There are fundamental differences in the signals elicited
by the various TLRs [28]. For TLR4, the TLR4-MD2
complex is localized at the cell surface and LPS signaling
is initiated at the cell membrane. Similarly, TLR2 is also
expressed on the cell surface.
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By contrast, TLLR9 is present in the cytoplasm, and both
the internalization of CpG DNA and endosomal matura-
tion are prerequisites for immune activation triggered
by CpG DNA [29]. Consistent with this latter finding,
the response to CpG DNA can be abolished by inhibi-
tors of endosomal maturation, such as chloroquine or
bafilomycin, as well as by wortmannin, an inhibitor of
phosphatidylinositol-3-OH (PI3) kinases that facilitate
phagocytosis, endocytosis and endosomal maturation. By
contrast, inhibition of endocytosis or endosomal matura-
tion does not affect LPS-induced signaling. Thus, the
expression of TLLR must be routed specifically to those
cellular sites that are best suited to sense their physiolo-
gical ligands.

GP96 is a paralogue of HSP90 that is localized in the
endoplasmic reticulum and is required for chaperoning
proteins to the cell surface. In a murine cell line deficient
in GP96, TLRs are retained intracellularly and the cells
are unresponsive to the TLR ligands LPS and peptido-
glycan. The reintroduction of GP96 into the mutant cell
results in restored expression of TLLR1, TLLR2 and TLLR4
at the cell surface, as well as their responsiveness to LPS,
showing that GP96 is required for the cell-surface export
of TLRs [30]. MD-2 is also involved in the intracellular
transport of TL.R4. In MD-2-deficient embryonic fibro-
blasts, TL.R4 is not expressed on the plasma membrane
but is retained predominantly in the Golgi apparatus. It is
highly likely that GP96 is responsible for the association
of TLR4 with MD-2 in the endoplasmic reticulum.

LLPS is also internalized by several types of cell, and this
process is generally thought to be involved in the detox-
ification and clearance of endotoxin. Recent studies have
shown, however, that in several types of cell LPS inter-
nalization may be an obligatory event that is linked
directly to ligand recognition and cell activation. In one
LPS-hyperesponsive intestinal cell line, TLR4 is not
expressed on the cell surface but is located in the Golgi
apparatus [31]. After the cells are exposed to LPS, TLR4
becomes co-localized with internalized LPS. Similarly, a
link between LPS internalization and the activation of signal
transduction in cardiomyocytes has been reported [32].

Recently, an intracellular system of LLPS recognition has
been proposed that involves the nucleotide-binding oli-
gomerization domain (NOD) family of proteins, NOD1
and NOD2 [33]. These are homologs of the Apafl/Ced4
caspase activators and each contains a nucleotide-binding
site and a leucine-rich repeat. They bind to LPS and
mediate the activation of nuclear factor (NF)-xB in
response to LLPS in a TLR4-independent manner, sug-
gesting that the NOD family may act as intracellular
receptors for invading bacteria and LPS. Susceptibility
to Crohn’s disease has been reported to be associated with
frameshift and missense mutations in NOD2 [33,34]. The
mutant NOD2 proteins cannot activate NF-kB in

response to LLPS, but the mechanism by which mutations
in NOD?2 lead to the development of Crohn’s disease
remains unclear.

Diversity and complexity in the signaling
pathways triggered by TLRs

Much evidence now indicates that the TLR signaling
pathways differ from one another and elicit different
biological responses (Figure 4). For example, stimulation
of DCs by Escherichia coli LLPS specifically induces the
production of the IL.-12 p70 variant and IP-10 through
TLR4, whereas stimulation through TLR2 results
instead in the release of the IL.-12 p40 homodimer [35].

The analysis of cytokine gene expression in macrophages
has identified differences between the genes induced by
TLLR4 ligands and those induced by TLR2 ligands [36,37].
When compared with TLR2 ligands, TL.R4 ligands pre-
ferentially induce the production of IL.-1B, IFN-y, IL.-12
p40 and monocyte chemoattractant protein (MCP)-5, as
well as the release of nitric oxide. Similar patterns have
been observed in mast cells [38]. Mast cells stimulated by
TLR2 ligands release more IL-4 and IL.-5, less TNF-o and
no IL-1f, as compared to mast cells stimulated by LLPS. In
addition, the stimulation of mast cells with TLR2 ligands
but not TLLR4 ligands results in the degranulation of mast
cells and the mobilization of calcium.

Figure 4
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Signaling pathways triggered by TLRs. TLR4 ligands such as LPS
induce inflammatory cytokines as well as IFN-B. The induction of
inflammatory cytokines is dependent on the adaptor molecules MyD88
and TIRAP, whereas the induction of IFN-f is independent of these
molecules and is regulated through the phosphorylation and nuclear
translocation of IFN regulatory factor 3 (IRF-3). TLR2 ligands such as
mycoplasma lipoprotein and peptidoglycan induce inflammatory
cytokines through the MyD88/TIRAP-dependent pathway, but do not
induce IFN-B as they do not activate the MyD88-independent pathway.
Cytokine induction through TLR5, TLR7 or TLR9 depends on MyD88
but not on TIRAP.

Current Opinion in Immunology 2003, 15:5-11

www.current-opinion.com



MyDS88 is an adaptor molecule that recruits the kinase
IRAK to the IL-1 receptor or the TLR4 receptor com-
plexes after stimulation by IL-1 or LPS, respectively.
Indeed, MyD88-deficient mice are unresponsive to IL.-1,
LPS and other microbial cell-wall components such as
peptidoglycan and lipopeptides [39,40]. But there is a
difference in the signaling pathways triggered by LPS and
those triggered by these latter types of stimuli. Myco-
plasmal lipopeptide activation of NF-xkB and MAP
kinases, which is mediated by TLR2, is completely
abolished in TLLR2-deficient or MyD88-deficient macro-
phages. By contrast, LPS activation of MAP kinases and
NF-kB remains intact in MyD88-deficient macrophages,
although activation is delayed in comparison to wild-type
mice [39]. This indicates that the LPS response is
mediated by both MyD88-dependent and MyD88-inde-
pendent pathways, each of which leads to the activation of
MAP kinases and NF-xB. The MyD88-dependent path-
way is essential, however, for the inflammatory response
mediated by LPS.

Recent studies have shown that the MyD88-independent
pathway is responsible for the activation of IFN regula-
tory factor 3 (IRF-3) and the subsequent induction of
IFN-B and IFN-inducible genes [41°,42°]. The MyD88-
independent pathway also leads to the induction of co-
stimulatory molecules such as CD40, CD80 and CD86
[43°]. Recently, another adaptor molecule, known as TIR
domain-containing adapter protein (TTRAP) or Mal, has
been cloned and shown to associate specifically with
TLR4. It was suggested that this molecule might be
responsible for the MyD88-independent response
[42°,44°°.45°°]. Analyses with TIRAP-deficient mice
have shown, however, that TIRAP is not specific to
TLLR4 signaling nor does it seem to participate in the
MyD88-independent pathway. Instead, TIRAP has a
crucial role in the MyD88-dependent signaling pathway
shared by TLR2 and TLR4 (M Yamamoto, K Takeda,
S Akira, unpublished data; see Now in press). The distinct
gene expression induced by individual TLLRs may be due
to the generation of ‘signalsomes’ that comprise different
combinations of adaptors after the stimulation of indivi-

dual TLRs.

Several signaling molecules downstream of MyD88 have
been analyzed recently through gene targeting. IRAK-4, a
novel IRAK molecule that is closely related to the Dro-
sophila protein Pelle, has been found to be indispensable
for responses to IL.-1 and to various TLR ligands [46°°].
IRAK-M has been shown to be a negative regulator of
TLR signaling [47°°]. But the mechanism by which these
signaling molecules mediate TLR signaling is not under-
stood completely.

Antiviral immunity and TLRs
Mammalian TLRs have been established as essential
receptors in the induction of immunity to several
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microbes, including Gram-positive and Gram-negative
bacteria, mycobacteria and fungi. But the role of TLRs
in antiviral immunity is not so well established. Recent
evidence indicates that TLLRs may be involved in the
detection and elimination of viruses. First, TLR4 has
been shown to recognize a surface glycoprotein of respira-
tory syncytial virus. TLLR4-deficient mice show a reduced
inflammatory response against, and impaired clearance of]
this virus [48]. Second, mouse mammary tumor virus has
been shown to activate B cells by an interaction between
the mammary tumor viral envelope protein and TLR4
[49]. Last, vaccinia virus encodes two proteins, A46R and
A52, that inhibit signal transduction mediated by the I1.-1
receptor, [L.-18 receptor and TLLR4, showing that vaccinia
virus is likely to evade the host immune response by
suppressing TIR-domain-dependent intracellular signal-
ing [50].

Recent findings that TLLR3 and TLR7 recognize syn-
thetic double-stranded RNA (which mimics viral RNA)
and antiviral chemical compounds, respectively, further
support the involvement of TLLRs in viral recognition.
Plamacytoid DCs are a unique subset of immature anti-
gen-presenting cells that secrete type I IFN. Plamacytoid
DCs express TLR7 and TLRY, and produce a large
amount of IFN-o in response to imidazoquinolines or
CpG DNA [51,52]. Although the natural ligand for TLR7
has not been identified, it is likely that TLLR7 recognizes
viral products or endogenous molecules that are produced
during the course of viral infection. Taken together, the
above findings strongly suggest that the mammalian
immune cells may recognize viral invasion through
TLR3, TLLR4, TLR7 and TLRO.

Conclusion

Since the discovery of TLRs a few years ago, much
progress has been made in our understanding of their
role in microbial recognition. But many questions are still
unanswered. How and where do TLRs recognize micro-
bial components? How does the activation of individual
TLRs elicit differential gene expression and biological
responses? Does the inappropriate activation of TLRs
result in autoimmune disease?

The last question arises from a recent study that has
shown that immune complexes containing self-DNA
activate self-IgG-specific B cells as a result of two distinct
signals acting through the B cell receptor and through
TLRO. This indicates the possible role of TLLRO in the
pathogenesis of systemic lupus erythematosus (SLE;
[53°°]) and may also explain why chloroquine (an
endosomal inhibitor and consequently an inhibitor of
TLLRY function) has some efficacy in the treatment of
SLE. Further understanding of innate immunity will
definitely provide the basis for more rational means to
treat many infectious diseases, immune disorders and
cancers.
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