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Origin, maturation and antigen presenting function of dendritic 
cells 
Marina Celia, Federica Sallusto and Antonio Lanzavecchia* 

Dendritic cells are cells specialized for antigen capture, 
migration and T cell stimulation. Recent advances have 
been made in understanding their origin, their heterogeneity, 
the mechanism of antigen uptake, and the signals that 
induce their migration and maturation into immunostimulatory 
antigen-presenting cells. Dendritic cells represent the 
natural adjuvants for T cell responses and their therapeutic 
exploitation in the near future is foreseen. 
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Abbreviations 
APC antigen presenting cell 
BrDU 5-bromo-2'-deoxyuridine 
CD40L CD40 ligand 
CTL cytotoxic T lymphocyte 
DC dendritic cell 
FcR Fc receptor 
GM-CSF granulocyte-macrophage colony-stimulating factor 
IL interleukin 
L ligand 
LPS lipopolysaccharide 
M-CSF macrophage colony-stimulating factor 
TAP transporter associated with antigen processing 
TCR T-cell receptor 
Th T helper 
TNF tumor necrosis factor 

I n t r o d u c t i o n  
Dendritic cells (DCs) are bone marrow derived cells that 
function as professional antigen presenting cells. DC pro- 
genitors are seeded through the blood into nonlymphoid 
tissues, where they develop to a stage referred to as 
immature DCs. These immature DCs are characterized by 
a high capability for antigen capture and processing, but 
low T cell stimulatory capability. Inflammatory mediators 
promote DC maturation and migration out of nonlymphoid 
tissues into the blood or afferent lymph. These migratory 
cells reach secondary lymphoid organs where they home 
to the T cell areas. At this stage the cells (referred to as 
mature DCs) have undergone a dramatic change in their 
properties: they have lost the ability to capture antigen and 
have acquired an increased capacity to stimulate T cells. 
Mature DCs therefore present to naive T cells antigen that 
has been captured at the level of peripheral tissues and so 
can be viewed as the sentinels of the immune system [1]. 
We will review recent progress in understanding the origin 

and heterogeneity, the mechanisms of antigen uptake, 
the nature of the maturation process and, finally, possible 
therapeutic exploitation of DCs. 

O r i g i n  a n d  d i f f e r e n t i a t i o n  o f  D e s  
There is evidence for a common progenitor for DCs 
and myeloid cells that can be expanded in cultures 
supplemented with GM-CSF. In the mouse, proliferating 
precursors are present in the bone marrow and peripheral 
blood and generate DCs, granulocytes and macrophages 
[2--4]. Human cord blood CD34+ hematopoietic pro- 
genitors cultured with GM-CSF and T N F - a  generate 
a mixed cell population containing different types of 
DCs (Fig. la) [5,6°]. At early time points (day five of 
culture) two subsets of DC precursors can be identified 
by the mutually exclusive expression of CDla  and 
CD14. Both subsets mature at day 12 into typical DCs. 
CDla  ÷ precursors generate cells that express Birbeck 
granules, the Lag antigen and E-cadherin, markers that are 
characteristic of epidermal Langerhans cells. In contrast, 
the CD14 + progenitors mature into C D 1 4 ,  CDla  + DCs 
lacking Birbeck granules, E-cadherin, and Lag antigen but 
expressing CD2, CD9, CD68, and factor XIIIa; markers 
characteristic of dermal dendritic cells. Interestingly, the 
CD14+ precursors, but not the CDla  + precursors, are 
still bipotent cells because they can differentiate into 
macrophages in response to M-CSF [6°,7]. 

DCs can also develop from CD14 + peripheral blood 
monocytes cultured with GM-CSF and IL-4 (Fig. lb) 
[8]. Under these culture conditions monocytes develop 
into a homogeneous population of DCs without dividing, 
as shown by the lack of BrDU incorporation, and the 
efficiency of this process is close to 100% (M Celia, 
unpublished data). These cells have the characteristics of 
immature DCs and can be further induced to mature by 
inflammatory stimuli such as T N F - a ,  IL-1 or LPS [8] or 
by monocyte conditioned medium [9°]. This notion has 
now been supported by several studies [9 °, 10,11,12 °, 13°]. 
It is interesting that immature DCs generated from 
monocytes still retain the M-CSF receptor, although they 
lose it following induction of maturation [9°,13°]. Thus 
the emerging concept is that monocytes represent an 
abundant source of precursors that can polarize towards 
DCs or macrophages, depending on the external stimuli. 
This polarization can be driven in vitro by the addition of 
appropriate cytokines (GM-CSF plus IL-4 or M-CSF). 

There is also evidence for a lymphoid DC precursor (Fig. 
lc); a cell capable of generating both lymphocytes as 
well as DCs has been identified in the mouse thymus 
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Figure 1 

Origin and maturation of DCs. Solid 
arrows indicate differentiation with cell 
proliferation. Dashed arrows indicate 
differentiation without proliferation. 
A minus sign ( - )  indicates negative, 
and a + sign indicates positive. 
(a) Hematopoietic progenitors cultured 
in GM-CSF and TNF-o~ proliferate and 
generate two distinct precursors at day 
five. The first is CDla + and differentiates 
into Langerhans cells at day 12. The 
second is CD14 + and differentiates into 
either DCs or macrophages, depending 
upon the influence of different cytokines. 
The original myeloid precursors can also 
generate granulocytes. (b) Peripheral 
blood monocytes cultured in GM-CSF 
and IL-4 develop into immature DCs 
without proliferating. TNF-c¢, IL-1, LPS or 
monocyte-conditioned medium (Mo-CM) 
induces maturation with loss of antigen 
capturing capacity and increased T 
cell stimulatory capacity. Monocytes 
and immature DCs express c-fms 
(M-CSF receptor) and can develop into 
macrophages under the influence of 
M-CSF. Peripheral blood monocytes 
may therefore correspond to the CD14 + 
cells in (a) that can generate DCs 
and macrophages. ICAM, intercellular 
adhesion molecule; R, receptor. (c) A 
common lymphoid precursor can 
generate DCs, T, B and natural killer (NK) 
cells. Lymphoid DCs may have different 
functional properties compared with 
those of myeloid DCs; for instance, they 
express FasL 
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and human thymus [14,15] and in human bone marrow 
[16]. The  murine lymphoid DCs express CD8(x and 
other lymphoid markers. Interestingly, the lymphoid DCs 
develop in the absence of GM-CSF [17"]. 

An intriguing possibility that is now being actively 
investigated is that the different lineages of DCs may 

perform different functions. It has been shown that 
CD8 ÷ lymphoid DCs, but not CD8-  DCs, may exert a 
suppressive effect on T cells as they express FasL and can 
induce apoptosis in responding T cells [18,]. In addition, 
among the DCs generated from CD34÷ progenitors using 
GM-CSF and TNF-(x, only the monocyte derived DCs 
can support B cell proliferation and differentiation into 
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IgM secreting cells ([6°]; C Caux, J Banchereau, personal 
communication). 

An important question is which cytokines or signals are 
responsible for DC development in vivo. The  cytokines 
that support the generation of DCs in vitro are GM-CSE 
IL-4 and TNF-a .  Addition of the cytokines c-KitL or 
Flt3L to the culture medium can increase the yield of 
DCs generated from bone marrow precursors [19,20] or 
from progenitors mobilized in peripheral blood [21]. Sur- 
prisingly, GM-CSF does not appear to be a major growth 
factor for DCs in vivo because mice that overexpress this 
cytokine do not have increased numbers of DCs [22]. 
Interestingly, injection of FIt3L into mice results in a 
dramatic increase in both lymphoid and myeloid DCs, 
suggesting that this cytokine can be used to expand DC 
populations in vivo [23°]. 

Antigen capture by immature DCs 
DCs can efficiently internalize a diverse array of antigens 
for processing and loading onto MHC class II molecules. 
Immature DCs are characterized by high level of endocytic 
activity which is lost upon maturation (reviewed in 
[24]). The  mechanisms of antigen uptake have been 
studied on monocyte derived DCs generated in culture 
with GM-CSF and IL-4 [25]. These cells have a very 
high level of constitutive macropinocytosis that allows 
them to take up large volumes of fluid and then to 
concentrate the macrosolutes. In addition, they express 
the low-affinity receptor for Fcy, FcyRII, and the mannose 
receptor. These receptors allow efficient capture of IgG 
immune complexes [81 and mannosylated antigens [25] 
respectively. The  mannose receptor contains multiple 
carbohydrate-binding domains and mediates endocytosis 
or phagocytosis of a variety of antigens that expose 
mannose or fucose residues [26]. Unlike the Fc receptors 
and membrane Ig, which are degraded together with the 
bound antigen, the mannose receptor releases its cargo 
at endosomal pH and recycles to the cell surface. It 
therefore allows internalization of ligands in successive 
rounds, providing a sustained capacity for antigen capture. 
In DCs the mannose receptor does not colocalize with 
MHC class II molecules, but efficiently delivers antigens 
for processing and class II restricted presentation, and 
recycles back to the plasma membrane. Indeed, man- 
nosylated proteins are presented with 100-fold higher 
efficiency than unglycosylated proteins by dendritic cells 
(AJ Engering et al., personal communication; A Tan et al., 
personal communication). Mannosylation thus represents 
an effective way to target antigens to DCs in vivo. 

Other receptors may contribute to the ability of DCs 
to capture exogenous antigens. These receptors include 
lectins such as DEC-205 [27], and CD23 [28], the FceRI 
[29,30] and possibly two new receptors homologous to 
FcocR that are selectively expressed on monocytes and 
DCs (Marco Colonna, personal communication). 

It is known that professional APCs can capture exogenous 
antigens for presentation on MHC class I molecules 
[31]. This function is particularly important for in vivo 
priming of C T L  responses to antigens that are not 
synthesized by professional APCs [32]. Immature DCs 
are phagocytic, although less than macrophages [33], and 
have a high level of constitutive macropinocytosis [25]. 
Interestingly, phagocytosis and macropinocytosis have 
been shown to deliver exogenous antigens into the cytosot 
for processing and presentation on class I molecules by 
the classical proteasome and TAP-dependent pathway 
[34-36]. When compared to macrophages, DCs were 
found to be much more efficient in presenting a soluble 
protein antigen on class I molecules (C Watts, personal 
communication) possibly because of the high constitutive 
level of macropinocytosis. 

The influence of DC maturation on antigen 
capture, processing and presentation 
Work in the early 1990s established that fresh Langerhans 
cells upon in vitro culture lose antigen capturing and 
processing ability, MHC class II molecule synthesis and 
acidic organelles and mature into immunostimulatory DCs 
[37-39]. These changes parallel those occurring in vivo 
when Langerhans cells migrate from the epidermis to 
the draining lymph nodes. There is growing evidence 
that inflammatory cytokines and bacterial products can 
stimulate DC maturation and migration. Indeed, systemic 
administration of TNF-a ,  IL-1 or LPS induces depletion 
of DCs from nonlymphoid organs and migration into 
lymph nodes [40,41"], suggesting that these stimuli might 
be responsible for DC maturation in vivo. 

The  induction of DC maturation and its effect on antigen 
capture and presentation have been studied in vitro. DCs 
generated from monocytes using GM-CSF and IL-4 have 
the properties of immature DCs, since they have high 
endocytic activity but low T cell stimulatory capacity 
[8,25]. These cells have relatively low levels of surface 
MHC class II molecules and these are rapidly internalized 
and recycle through a large intracellular pool. The  high 
level of class II internalization and recycling may be 
relevant for the function of immature DCs, as it has 
been shown that recycling class II molecules can bind 
peptides generated in the early endosomal compartment 
[42]. TNF-ot, IL-1 and LPS added to immature DCs 
i~nduce a coordinate series of changes resulting in the 
loss of endocytic activity, upregulation of adhesion and 
costimulatory molecules and redistribution of class II 
molecules [25]. In maturing DCs the level of surface 
class II molecules increases up to fourfold within 24 
hours as a consequence of reduced internalization and 
increased biosynthesis. In this way DCs can load many 
antigenic peptides rapidly following exposure to the 
inflammatory stimulus, thereby favoring presentation of 
infectious antigens (M Celia, A Engering, V Pinet, J 
Pieters, A Lanzavecchia, unpublished data). 
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The  signal transduction pathways that control DC mat- 
uration are still poorly characterized but we anticipate 
that this will become an important area of investigation. 
Ceramide is produced by DCs stimulated by TNF-a ,  IL-1 
and CD40L, and can transiently inhibit endocytosis [43]. 
What role this pathway may play in the induction of DC 
maturation remains to be established. 

Recruitment and migration 
The  ability of DCs to be recruited to sites of antigen 
challenge and travel to secondary lymphoid organs is 
an essential function of this professional APC [44]. 
Recruitment of DCs from blood to tissues can be observed 
in the lung and the liver but not in other districts and 
several pathways of recruitment are known depending on 
the method of antigen challenge. Following inhalation 
of bacteria, DC precursors are rapidly recruited into the 
airway epithelium where they develop into typical DCs 
that subsequently migrate to the regional lymph nodes 
[45]. After intravenous injection of inert particles, particle- 
laden cells can be detected in the hepatic lymph [46"]. 
These cells represent recently produced immature DCs, 
most likely monocytes, that are recruited to the hepatic 
sinusoids by phagocytosing Kupffer cells and manifest a 
temporary phagocytic activity for intravascular particles. 
Such phagocytic activity is subsequently downregulated 
when these cells translocate from the sinusoidal area to 
the hepatic lymph. After intratracheal injection of a protein 
antigen, antigen-loaded DCs are found in the draining 
lymph nodes [47]. Antigens present in the intestinal lumen 
are taken up by specialized epithelial cells (M cells) 
present in the epithelium overlying the dome region 
of Peyer's patches [48]. Immature DCs are strategically 
located below the M cells and have been shown to capture 
incoming antigens in vivo [49°,50"]. It has been suggested 
that these immature DCs migrate to the T cell areas of the 
same Peyer's patches or mesenteric lymph nodes where 
they present antigen to naive T cells. Recently it has 
been shown that a subset of DCs distinct from follicular 
DCs can be found in germinal centers. These cells are 
CD4 +, C D l l c  +, CDla-,  CD3-, have low endocytic and 
phagocytic capacity and are highly stimulatory for T but 
not for B cells. It has been suggested that they may be 
derived from blood CD4 ÷ C D l l c  + DCs and may play an 
important role in activation of germinal center T cell [51°]. 

While the pathways of DC migration are relatively well 
characterized, the molecular mechanisms that control 
recruitment and migration of DCs are far less defined. It 
is possible that certain combinations of chemokines and 
cytokines may effectively recruit DC precursors (possibly 
monocytes) from the blood stream; DCs, macrophages 
and monocytes respond to different sets of chemokines 
[52]. In addition to chemokines, adhesion molecules are 
likely to control DC migration from peripheral tissues 
to lymph nodes. Firstly, Langerhans cells that migrate 
out of the skin downregulate E-cadherin and so lose 
their interaction with the surrounding keratinocytes [53]. 

Secondly, CD44 expression on DCs can be modulated 
by external stimuli that induce migration, resulting in 
increased expression of CD44 splicing variants that 
have been implicated in metastatic dissemination [8,54]. 
Interestingly, the maturation process results in a dramatic 
rearrangement of the cytoskeleton and increased motility 
that may promote cell migration [55"]. 

Interaction between DCs and T cells 
The  high capacity of mature DCs to stimulate T cells 
has been attributed to a variety of factors. Low DC 
surface levels of sialic acid may decrease repulsive forces 
and facilitate clustering with T cells [56] and high DC 
levels of adhesion molecules may favor TCR engagement 
[57]. In addition, high expression levels of costimulatory 
molecules on DCs facilitate T cell activation by lowering 
the activation threshold [58]. 

While the D C - T  cell interaction has been traditionally 
viewed as a one way interaction, recent data suggest that 
T cells may play an important role in activating DCs 
thus further enhancing the T cell stimulatory capacity 
of the DCs (Fig. 2). Indeed, ligation of CD40 has been 
shown to increase DC viability [59,60] and to induce DC 
maturation [8]. DCs can produce IL-12, a key cytokine 
for the generation of T h l  responses [61 °] and CD40L is a 
selective and powerful inducer of IL-12 production in DCs 
[62",63°]. The  fact that DCs are likely to deliver IL-12 to 
T cells in a cognate fashion makes this source of IL-12 
particularly effective. 

Several reports described suppression of DC function 
(see Fig. 2). IL-10 can induce apoptosis in DCs [60] 
and decrease T cell stimulatory capacity [64] as well 
as IL-12 production [63°]. Glucocorticoids can decrease 
DC viability as well as the expression of costimulatory 
molecules [65]. Prostaglandin E2 decreases IL-12 while 
increasing IL-10 production, thus promoting generation 
of Th2 responses [66]. Interestingly, cross-linking of 
the complement receptor CD46 by measles virus or by 
the natural ligand C3b inhibits IL-12 production by 
human monocytes and DCs, thus providing a plausible 
mechanism for virus induced immunosuppression and Th2 
polarization ([67]; C Caux, personal communication). 

Therapeutic applications 
The  availability of large numbers of DCs has opened 
up new possibilities for immunization, particularly with 
respect to the generation of C T L  responses to tumor anti- 
gens (reviewed in [68]). Several studies in experimental 
animal models have shown that this approach is effective. 
Mice immunized with DCs pulsed with synthetic peptides 
[69°,70"], acid-eluted peptides from tumor cell lines [71 °] 
and even intact soluble proteins [72 ° ] develop protective 
C T L  responses against tumors. Using peptide-pulsed 
DCs, C T L  responses to tumor antigens can be induced 
from peripheral blood lymphocytes of healthy donors 
[73°,74"]. As an alternative to peptides, DCs can be 
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Priming of naive T cells by DCs is regulated by stimulatory and 
inhibitory signals. Effector Th cells can activate DCs via the 
CD40L-CD40 interaction, thus increasing the expression of 
intercellular adhesion molecules (ICAMs) and costimulatory (BT) 
molecules and inducing the production of IL-f 2. This activation 
process facilitates priming and Thl polarization of naive T cells 
clustered around the same DC. The inhibitory stimuli decrease DC 
viability, IL-12 production and stimulatory capacity and so favor Th2 
responses. 

transfected with the relevant genes using expression 
vectors, naked DNA or RNA [75"]. In humans the use of 
Des  as adjuvants will be tested in pilot immunogenicity 
studies (R Steinman, personal communication). It will 
be important to establish the best source of Des,  the 
best conditions for pulsing, whether maturation should 
be induced in vitro before injection of the cells into the 
patient and, finally, whether the addition of T helper 
epitopes may further increase DC immunogenicity by 
promoting DC activation by memory Th  cells [62"]. 
Clinical trials in melanoma patients have been started 
using Des  generated with GM-CSF and IL-4 from the 
patients' peripheral blood monocytes (F Nestle, personal 
communication). 

Although the working principles of Des  are increasingly 
understood we still need more information on the 
molecular mechanisms of DC function in order to be able 
to fully exploit their therapeutic potential. At present, 
this area of research has entered the exciting stage where 
knowledge can be applied in vivo and, in some cases, in 
promising clinical trials. It truly appears that the long-term 
goal of using Des  for the immunotherapy of human 
diseases may be achieved in the not too distant future. 
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