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Phagocytosis is an evolutionarily conserved process utilized by
many cells to ingest microbial pathogens, and apoptotic and
necrotic corpses. Recent investigation has revealed a
fundamental requirement for two co-ordinated cellular
processes — cytoskeletal alterations and membrane trafficking
— in the phagocytic event. Some elements of this machinery
are co-opted by certain pathogens to gain entry into host cells.
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Abbreviations
DAG diacylglycerol
DC dendritic cells
FcR Fc receptor
ITAM immunoreceptor tyrosine-based activating motif
LPS lipopolysaccharide
PI3K phosphatidylinositol 3-kinase
PIP2 phosphatidylinositol-4,5-bisphosphate
PKC protein kinase C
PLC phospholipase C
PS phosphatidylserine
PSR PS receptor
TLR Toll-like receptor

Introduction
Phagocytosis is the process by which leukocytes and other
cells ingest particulate ligands whose size exceeds about
1 µm. This phylogenetically conserved process is critical 
for innate immunity. By ingesting microbial pathogens, 
phagocytic leukocytes accomplish two essential immune
functions. Firstly, they initiate a microbial death pathway,
in part by routing ingested pathogens to lysosomes, which
are rich in hydrolytic enzymes, and also by targeting 
the phagocyte oxidase complex to the phagolysosome.
Secondly, phagocytic leukocytes, particularly dendritic cells
(DC), utilize phagocytosis to direct antigens to both MHC I
and II compartments [1]. Thus, phagocytosis serves a dual
role: as an innate immune effector as well as a bridge
between the innate and acquired immune responses.

Here we focus on recent progress in the cell biology of
phagocytosis and discuss the importance of these findings
to innate immunity.

Signaling events during phagocytosis
Clustering of phagocytic receptors by ligation to multiple 
vicinal ligands on the surface of the target particle triggers
signals that initiate engulfment. Many receptors are 

competent to engage the phagocytic machinery (Table 1).
For Fc receptors (FcRs), the initial intracellular event
appears to be phosphorylation of the receptors themselves, or
associated immunoreceptor tyrosine-based activating motif
(ITAM)-containing subunits, by members of the Src family
[2•,3]. Lipid rafts may play a role in coupling the kinases to
the receptors, but rafts are more likely to be important for
phagocytosis triggered by unopsonized targets [4–6] or 
facilitated by extracellular-matrix proteins [7]. The phospho-
rylated receptor/subunit ITAMs then serve as docking sites
for Syk. This tyrosine kinase is absolutely required for the
internalization of IgG-opsonized particles, but not for 
particles taken up by other receptors [8,9], suggesting that
other kinases must be involved in the latter cases. 

The precise sequence of events thereafter is less clear, but
adaptor proteins such as LAT [10], SLP-76, BLNK [11],
Crkl [12], Nck [13] and possibly Fyb/SLAP (MG Coppolino
et al., unpublished data) are engaged by the activated 
receptor complex. A wave of lipid remodelling ensues.
Phosphatidylinositol 3-kinase (PI3K) is activated, generat-
ing 3′-phosphoinositides at the phagosomal cup. This
accumulation is sharply restricted in both space and time,
consistent with a role in transducing some of the early 
signals that prompt pseudopodial extension. The abrupt 
dissipation of the 3′-phosphoinositide gradient is due, at
least in part, to the recruitment of the lipid phosphatase
SHIP to the phagocytic cup [14•,15•].

The synthesis of phosphatidylinositol-4,5-bisphosphate
(PIP2) is also accelerated during phagocytosis [16••]. This
lipid is not only a substrate of PI3K, but is also the target of
phospholipase C (PLC), which generates diacylglycerol
(DAG) during phagocytosis (Figure 1). The latter mediator
can activate both classical and novel isoforms of protein
kinase C (PKC), which are recruited to the phagosome and
have been implicated, by pharmacological evidence, in parti-
cle uptake [17]. Activation of both PLC and PKC requires
prior activation of PI3K [18]. Other kinases implicated in
phagocytosis include MEK1 and/or ERK — which may be
selectively involved in FcγR-mediated phagocytosis in
human neutrophils [19] but not in macrophages [20] — and
PKA [21]. Lastly, PLA2 and PLD are also activated and
believed to participate in the phagocytic process [22,23]. The
former may participate in vesicle trafficking during phago-
cytosis (see below) as well as contributing to the production
of leukotrienes that amplify the phagocytic signal [24].

Cytoskeletal alterations during phagocytosis
Among the most striking features of phagocytosis is the
rapid, focal accumulation of F-actin and associated 
proteins in the periphagosomal region (Figure 2). Members
of the Rho family of GTPases signal actin assembly 
during phagocytosis. For FcR-mediated phagocytosis, Rac1
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and Cdc42 (which are members of the Rac family) play
prominent roles [25−28]; in contrast, Rho [27] has been
implicated in phagocytosis mediated by complement
receptor 3, a leukocyte integrin, although Rho may have
additional roles in FcγR-mediated phagocytosis [29].
Work on Caenhorabditis elegans suggests that the require-
ment for Rac in phagocytosis, although not absolute, is
evolutionarily conserved and critical for diverse forms of
phagocytosis [30•]. Although no single Rac or Cdc42
effector has been unequivocally demonstrated to be
essential for phagocytosis, members of the WASP family
are likely to play key roles [31,32]. These proteins act 
as molecular scaffolds by associating with plasma-
membrane-associated PIP2 (in the case of WASP and
N-WASP), with adaptor proteins and with the Arp2/3-
based actin-nucleating machinery [33,34,35•]. Cdc42
accelerates the actin-nucleating activity of the Arp2/3
complex [33,34], thus providing a nidus for the generation
of actin polymer at the base of the phagosome [35•].

ARF6, a member of the ARF family of GTPases, 
contributes to Rac-initiated cytoskeletal events [36,37].
ARF6 functions both upstream of Rac, inducing its 
activation [38] and plasma membrane redistribution 
[39], as well as downstream following plasma membrane 
targeting of Rac [37]. ARF6 also serves as a co-factor for
the generation of PIP2 at the plasma membrane [36].

PIP2 is likely to play multiple roles in modifying the
cytoskeleton during phagocytosis. It may signal the 
dissociation of actin-capping proteins, such as gelsolin [40]
and CapG [41], from the barbed ends of actin filaments,

Table 1

Examples of phagocytosis-promoting receptors in mammalian cells that participate in innate immunity.

Cell type Receptor Target Ligand References

Leukocytes FcγRs Pentraxin-oposonized zymosan (yeast) Serum amyoloid P, C-reactive protein [86,87]
PMN, Mo, MΦ CR1 (CD35) Complement-opsonized bacteria and fungi C3b, C4b, mannan-binding lectin [82]
PMN, Mo, MΦ CR3 (CD11b–CD18; Complement-opsonized bacteria and fungi C3bi, C3d [126]

αMβ2; Mac1) Gram-negative bacteria LPS
Bordetella pertussis Filamentous hemagglutinin
Yeast β-glucan

MΦ, DC CR4 (CD11c–CD18) M. tuberculosis ? [127]
MΦ CD43 (leukosialin/sialophorin) M. tuberculosis ? [128]
Mast cells CD48 Enterobacteria FimH [129]
MΦ Mannose receptor Pneumocystis carinii, Candida albicans Mannosyl/fucosyl residues [130]
MΦ Scavenger receptor AI/II Apoptotic lymphocytes ?PS [131–133]

Gram-positive cocci Leipoteichoic acid
Sertoli cells, Scavenger receptor BI Apoptotic cells PS [134,135]
thymic Epi
MΦ MARCO Escherichia coli, S. aureus ? [136]
MΦ MER Apoptotic thymocytes ?Gas6/PS [119•]
Many PSR Apoptotic cells PS [113••]
MΦ CD36 Apoptotic PMN PS/thrombospondin [85,137]
MΦ CD14 Pseudomonas aeruginosa ?LPS [138,139]

Apoptotic cells ?
Many β1 integrins Yersinia Invasin [140]
MΦ αvβ3 Apoptotic cells ?Thrombospondin [84,85]
DC, Epi αvβ5 Apoptotic cells ? [141,142]
Epi E-cadherin Listeria InlA [72,143]
Epi Met Listeria InlB [73••]

Specific inhibition of binding by these receptors correlates with
inhibition of phagocytosis. However, with some notable exceptions
(e.g. FcγRIIA and the macrophage mannose receptor), it is 
possible that the indicated receptor serves to enhance ligand 

binding, rather than to participate directly in the ingestion process. 
Epi, epithelial cells; Leuk, leukocytes; Mo, monocytes;
MΦ, macrophages; PMN, polymorphonuclear leukocytes.

Figure 1

Lipid remodelling during phagocytosis. The figure illustrates localized
changes in PIP2 and DAG in macrophages engulfing opsonized
particles (IgG-coated red blood cells). The left panel shows a
differential interference contrast image; the right panel shows a
dual-color confocal fluorescence image. The localization of PIP2 was
detected using a cyan fluorescent-protein-labelled PH domain from
PLCδ (hence PIP2 is blue), whereas DAG was detected with a 
yellow fluorescent-protein-tagged C1 domain of PKCδ. For details, 
see reference [16••].
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thus contributing to filament growth. Gelsolin also 
severs actin filaments; the coordination of severing and 
uncapping ensures the generation of short actin filaments
that become incorporated into a force-generating network. 

Cofilin is an actin-depolymerizing protein that, when
dephosphorylated, contributes to actin remodeling by
enhancing actin filament turnover [42,43] and creating
new barbed ends [44]. The identity of specific phos-
phatase(s) that dephosphorylate phospho-cofilin in vivo is
unknown. The major kinases that phosphorylate cofilin
are LIM kinases 1 and 2 [45,46], but other cofilin kinases
have been identified [47,48]. Interestingly, LIM kinase 1
is activated by effectors of Rac [45,46] and LIM kinase 2
is activated by the Rho effector, ROCK [49]. A
Cdc42-activated kinase phosphorylates and activates both 
LIM kinase isoforms [50]. Cofilin dephosphorylation 
accompanies phagocytosis, and microinjection of anti-
cofilin antibodies into macrophages inhibits phagocytosis
of yeast [51].

Work with Dictyostelium has established a role for several
unconventional myosins during phagocytosis [52,53].

These proteins may contribute to the generation of 
membrane tension and/or particle adhesion [54] as well as
pseudopod extension, in the case of Myosin X (D Cox,
JS Berg, J Chinegwundoh, BM Dale, RE Cheney,
S Greenberg, unpublished data) and phagosome closure
[55]. Given the diversity of the myosin superfamily and
the recruitment of multiple members of this family to
phagocytic cups, additional roles for myosins in phagocytosis
are likely.

Membrane dynamics during phagocytosis
Professional phagocytes have an insatiable appetite: they
can engulf multiple, often large particles. Such extensive
phagocytosis requires the internalization of a vast area of the
surface membrane. It has been estimated that, in extreme
cases, macrophages can internalize the equivalent of >100%
of their surface area within 30 minutes [56••]. Remarkably,
this occurs without apparent reduction in exposed 
membrane surface. In fact, direct electrophysiological esti-
mates revealed that the surface area of macrophages increases
during the early stages of phagocytosis [57] and similar 
conclusions were reached by spectroscopic methods [58,59].
These results imply that the loss of membrane taken up into

Figure 2
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Cytoskeletal alterations during FcγR-mediated phagocytosis.
Actin polymerization ensues following receptor clustering by ligand
(e.g. IgG) bound to the pathogen surface. Polymerization occurs
following phosphorylation of receptor-associated ITAMs and
recruitment of Syk. Actin polymerization requires multiple enzymatic
activities, including PI 5-kinase (PI5-K) and an array of GTPases,
notably Rac, Cdc42 and ARF6. Other GTPases, such as Rho [27]
and Rap1 [144] may play a more prominent role in
complement-receptor 3 (CR3)-mediated phagocytosis. Actin
nucleation occurs principally through recruitment of the Arp2/3

complex. Additional roles for uncapping proteins (e.g. CapG) and
severing/uncapping proteins (e.g. gelsolin and cofilin), probably
accelerated by either the local enhanced production of PIP2 or
dephosphorylation (of cofilin), are likely. According to this model, the
lipid product of PI3K, PI(3,4,5) trisphosphate, plays no direct role in
promoting actin assembly, but rather participates in pseudopod
extension (see text) and recruitment of unconventional myosins
(e.g. Myosin X). Myosins assist in transducing mechanical energy
necessary for pseudopodial dynamics. Question marks refer to
hypothetical components of the model. 
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phagosomes must be compensated by exocytic delivery of
endomembranes to the surface.

At least part of the exocytosis triggered by phagocytosis
occurs very near the site and at the time of particle engulf-
ment. Direct visualization of endomembrane traffic in live
cells undergoing phagocytosis reveals that cytoplasmic
vesicles are delivered focally to the vicinity of the nascent
phagosome. Moreover, the exposure to the surface of 
epitopes found in the lumen of such vesicles implies that
fusion of endomembranes precedes sealing of the phago-
somal membrane [60•]. The highly localized and rapid
nature of the exocytosis suggests that, rather than being
merely a compensatory reaction, membrane traffic is an
essential requirement for efficient phagocytosis. Three
observations support this notion. Firstly, phagocytosis is
inhibited by blockers of PI3K [59,61], an enzyme that is
involved in multiple membrane traffic events. Secondly,
phagocytosis is reduced by cleavage of SNAREs using
tetanus or botulinum toxins [58]. SNAREs are ubiquitous
proteins thought to promote the docking and coalescence
of lipid bilayers during membrane fusion events. Thirdly,
a dominant-negative form of NSF similarly decreased
phagocytic efficiency [62]. NSF is an ATPase that ensures
the availability of active SNAREs for the fusion process.

Recent data indicate that early endosomes represent an
important source of the membrane that is delivered to the
nascent phagosome. The bacterial toxins that were found 
to depress phagocytosis are known to cleave and thereby 
inactivate VAMP3, a SNARE found in recycling endosomes.
Accordingly, direct visualization of VAMP3-containing vesi-
cles using a chimeric construct tagged with a fluorescent
protein documents the occurrence of focal exocytosis at the
phagosomal cup [60•]. Other proteins associated with 
endocytic vesicles that play a role in promoting phagocytosis/
pseudopod-extension include amphiphysin IIm and
dynamin 2, although their exact roles in these processes are
uncertain [63,64•]. In addition, other sources of membrane
may subserve similar and novel functions during phago-
cytosis. These include the endoplasmic reticulum [65] and
lysosomes [66], the latter of which are required for invasion
of Trypanosoma cruzi.

The tethering of secretory vesicles with their target 
membranes is thought to be mediated by small GTPases
of the Rab family. One such protein, Rab11, promotes 
trafficking of sorting/recycling endosomes, the compartment
that expresses VAMP3, to the plasma membrane. Ectopic
expression of an active form of Rab11 potentiated phago-
cytosis and, conversely, an inactive Rab11 mutant
decreased phagocytic efficiency [56••]. These observations
further suggest a contribution of endosome exocytosis to
the formation and closure of phagosomes. ARF6 has also
been postulated to target recycling vesicles to the plasma
membrane [67,68]. It is therefore noteworthy that expres-
sion of mutant forms of ARF6 also depressed phagocytic
efficiency [69,70]. This may reflect the contribution of

ARF6 to cytoskeletal rearrangements (see above), but a
possible role in vesicle fusion cannot be discounted.

The cumulative evidence suggests that the complex
cytoskeletal rearrangements that drive phagocytosis are
accompanied by local membrane remodelling that may
contribute to pseudopod extension and/or sealing.

Co-opting of the host-cell phagocytic
machinery by invasive pathogens
The initial host response to most bacterial and fungal
pathogens is phagocytosis. The particular route of entry is a
function of both the specific host cell mediating ingestion
and the pathogen itself [71]. For example, internalization 
of Listeria is mediated by the adhesins InlA, which binds 
to E-cadherin on host epithelia, and InlB, which binds to
the Met tyrosine kinase and to gC1q-R on host cells
[72,73••,74]. E-cadherin-mediated entry requires participa-
tion of catenins [75•] and Met-dependent signaling induces
activation of PI3K [73••]. For Yersinia, recognition of invasin
on the bacterial surface is mediated by β1 integrins on a
variety of cells; bacterial uptake requires the participation
of Src-family tyrosine kinases and focal adhesion kinase
[76]. Many bacterial pathogens utilize multiple, possibly
redundant mechanisms of entry into host cells. This is likely
to be the case for Neisseria. Its adhesins include epitopes on
the pili, which bind to the host cell protein CD46, and outer
membrane proteins (Opa variants), which bind to members
of the CD66 (CEACAM) family on phagocytes. CD46 
ligation leads to calcium fluxes [77] whereas CD66 ligation
results in activation of Src-family kinases and Rac [78].
Interestingly, activation of the Src-family members by
Neisseria gonorrhoeae appears to require activation of an acid
sphingomyelinase [79,80].

Opsonization of either invasive or non-invasive pathogens
is an important mechanism used by the host to enhance
the efficiency of phagocytosis. Complement fixation by
the alternative or lectin pathways is one such example;
however, the list of known non-immunoglobulin opsonins
is growing and includes lung surfactant proteins and other
collectins [81–83], extracellular matrix proteins [7,84,85],
and pentraxins [86,87]. Some of these proteins may 
stimulate phagocytosis indirectly, by binding to phagocyte
receptors that activate phagocytosis in general [7,88]. In
some cases, the same proteins that act as opsonins for
microbial pathogens also promote phagocytosis of apoptotic
cells [89,90] (see below). 

Several pathogens, such as Salmonella or Shigella, stimulate
a ‘trigger’ mechanism of invasion, inducing a localized
‘splash’ of F-actin-rich membrane protrusions in the
phagocyte that resemble forming macropinosomes. Work
from Galan’s group [91−93] has established a molecular
basis for this form of phagocytosis: using a Type III 
secretion system, Salmonella injects SopE — a protein that
serves as a guanine nucleotide exchange factor for Cdc42
and Rac — into host cells [91]. Yet another Salmonella 
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protein, SipA, decreases actin depolymerization [92] and
enhances actin-bundling activities of other actin-binding
proteins [93,94]. In contrast, Shigella-induced ruffling and
internalization are stimulated by secretion of IpaC, which
activates Rac and Cdc42 indirectly [95], and IpaA, which
binds to vinculin [96]. Rac and Cdc42 appear to be respon-
sible for Shigella-stimulated actin nucleation, whereas Rho
and IpaA-mediated alterations appear to modify the shape
of the ruffles, rendering them competent to promote 
bacterial internalization [97,98].

Some pathogens synthesize anti-phagocytic factors [99].
For example, Yersinia secretes YopH, a tyrosine phos-
phatase that dephosphorylates the focal adhesion protein,
Cas [100]. Another secreted product of Yersinia, YopE, is a
RhoGAP [101]. Many pathogens evade killing by influenc-
ing post-phagocytic events, such as phagosome maturation
[71,102–104]. This can result in evasion of biologically
active lysosomal enzymes [71,102] or components of the
NADPH-oxidase-containing vesicles [105,106]. Among the
survival strategies employed by Mycobacterium tuberculosis,
for example, is the recruitment of coronin 1 (TACO) [107]
and suppression of calcium signaling [108], both of which
are suggested to contribute to evasion of lysosome fusion
by the Mycobacterium-containing phagosome.

Phagocytosis of apoptotic cells
Senescent cells generally undergo apoptosis. Extensive
apoptosis also occurs during the course of organogenesis.
Effective removal of such apoptotic cells is required for
appropriate tissue renewal and remodelling. To a large
extent, this occurs by phagocytosis, which facilitates both
clearance of apoptotic bodies and completion of the cell
death pathway [109••,110••]. Clearance of apoptotic
corpses is mediated by macrophages as well as non-
professional phagocytes, including epithelia.

Phosphatidylserine (PS) appears to be a major ligand on the
surface of apoptotic cells that triggers phagocytosis. In 
normal cells, PS is largely confined to the inner leaflet of the
plasma membrane. During apoptosis, PS becomes exposed
at the outer leaflet of the membrane. This results from
transmembrane lipid scrambling that is not counteracted by
the flippases that maintain lipid asymmetry in normal cells.

The ATP-binding cassette transporter 1 (ABC1), a structural
ortholog of C. elegans ced-7 [111], is required for efficient
transbilayer redistribution of PS on phagocytic targets
[112]; interestingly, its expression in macrophages is also
required for maximal phagocytosis of apoptotic targets
[112]. Various molecules have been postulated to function
as possible PS receptors (PSRs) on the surface of 
mammalian phagocytes, including CD14, CD36, CD68 and
LOX-1. Most of these, however, do not discriminate
between PS and other phospholipids, whereas phagocytosis
of apoptotic cells is particularly dependent on PS. Such
selectivity is best explained by the recent identification of
a distinct PSR with exquisite specificity for PS [113••]. 

The multiplicity of receptors implicated in phagocytosis of
apoptotic cells, together with the dependence of the
process on PS, prompted the notion that the process
involves a ‘tether and tickle’ sequence. According to this
model, introduced by Henson and colleagues [114••], one
of a variety of receptors with comparatively high affinity
would be involved in the initial attachment of apoptotic
cells to the phagocyte. Such initial tethering is required for
the PSR, which has comparatively lower affinity for its 
ligand. The low affinity of the PSR ensures that non-apop-
totic cells, which expose only small amounts of exofacial
PS, are not subjected to phagocytosis. This tandem 
mechanism is not unprecedented, since CD14 is thought to
mediate the inflammatory response to lipopolysaccharides
(LPSs) by initially attracting and then handing over the 
ligand to Toll-like receptors (TLRs).

The importance of phagocytosis of apoptotic cells is under-
lined by the evolutionary conservation of the process,
which has been described in detail in C. elegans and in
Drosophila. In fact, comparative studies to date suggest that
many aspects of the phagocytic process, ranging from the
extracellular receptors — for example, croquemort in
Drosophila and CED-1 in C. elegans, which are analogous to
mammalian scavenger receptors [115,116••] — to intracellular
intermediates and effectors, are highly conserved across
species (Table 2).

Little is known to date regarding the transduction of signals
that lead to phagocytosis of apoptotic cells in mammalian
cells. Initial indications suggest the usage of pathways 
similar to those for microbial engulfment, including PI3K
and Rho-family GTPases [117,118]. However, conservation
in signal transduction pathways between phagocytosis of
apoptotic cells and other targets is not absolute; for example,
ingestion of apoptotic thymocytes, but not IgG-coated 
targets, utilizes the receptor tyrosine kinase, MER. This
kinase recognizes apoptotic cells indirectly by binding
PS-recognizing opsonins, such as Gas6 [119•,120].

Phagocytosis and inflammation
Phagocytosis and inflammation co-exist. This naturally 
raises the question of whether phagocytes utilize common
signaling intermediates to effect phagocytosis and gene

Table 2

C. elegans gene products involved in phagocytosis of
apoptotic corpses.

C. elegans gene Function Mammalian References
product equivalent

CED-1 Receptor SREC [116••]
CED-2 Adaptor CrkII [145••]
CED-5 Adaptor DOCK 180 [146]
CED-6 Adaptor hCED-6 [147,148]
CED-7 Transporter ABC1 [111]
CED-10 GTPase Rac1 [145••]

SREC, scavenger receptor expressed by endothelial cells.
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expression. Examples of distinct signaling paradigms exist,
such as a requirement for Rac in the phagocytosis of
Pseudomonas aeruginosa, but not in NF-κB-dependent gene
expression induced by the same bacterium [121]. However,
other pathogens, such as Staphylococcus aureus, trigger trans-
activation of NF-κB via a multiprotein complex that
includes Rac1 and TLR2 and in an apparently Rac-depen-
dent manner [122]. The relationship between recruitment
of various TLRs to phagosomes [123] and signaling phago-
cytosis remains to be clarified. It is noteworthy that, unlike
the uptake of IgG-opsonized particles, phagocytosis of
apoptotic cells by the PSR is not accompanied by the
release of inflammatory mediators and is associated with
the release of the anti-inflammatory growth factor, TGF-β
[113••]. This ensures the ongoing clearance of apoptotic
cells without concomitant inflammation.

Anti-inflammatory phagocytosis is also facilitated by serum
proteins like C-reactive protein and the C3 component of
complement, which coat apoptotic cells and mediate their
uptake via non-inflammatory receptors [124••]. It is tempting
to speculate that the striking association of complement-
component deficiencies and systemic lupus erythematosus
results from an inability to clear apoptotic corpses in a non-
inflammatory manner, resulting in the generation of
autoantibodies [124••]. Similarly, in the absence of func-
tional MER, the inability to clear apoptotic cells efficiently
results in the generation of anti-DNA antibodies [119•]. In
contrast, necrotic cells may release pro-inflammatory 
substances, such as heat shock proteins [125••], or may be
ingested by pro-inflammatory receptors that counteract the
immunosuppressive effects of the PSR [113••].

Conclusions
Phagocytosis is a fundamental cellular process that serves
multiple functions in immunity. The multiplicity of phago-
cytosis-promoting receptors contrasts with the convergence
of signaling strategies designed to promote target engulf-
ment. On the other hand, differences in the nature of
specific phagocytic pathways determine the relative extent
of the inflammatory response. The study of phagocytosis is
rapidly evolving and complex, reflecting recent advances in
a range of disciplines. Future insights into the mechanisms
of phagocytosis may suggest novel strategies to modulate
the immune response, holding promise for the treatment of
an array of human diseases.
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