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the dam. Sites near the dam had greater proportions 
of univoltine organisms with spherical and low-flex-
ibility  bodies. On the other hand, free-flowing sites 
had increased proportions of multivoltine organisms 
with flattened bodies and flexible. The macroinverte-
brate assemblages at all sites were mainly homogene-
ous  and composed  functionally generalist taxa. This 
study enhances our understanding of the environmen-
tal effects of small run-of-river dams on benthic mac-
roinvertebrates, emphasizing the usefulness of func-
tional characteristics for those assessments.

Abstract Hydropower dams and their reservoirs 
are major disturbances affecting riverine ecosystems 
worldwide. However, most existing knowledge comes 
from large hydropower systems. We evaluated the 
upstream and downstream effects of a small run-of-
river hydropower dam on the functional structure of 
benthic macroinvertebrate assemblages in a Neotropi-
cal savanna river. We found that functional original-
ity and divergence were significantly higher near the 
dam site. In contrast, functional dispersion was higher 
at free-flowing sites upstream and downstream of 
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Introduction

The environmental effects of hydropower dams and 
reservoirs are well-documented worldwide (Ruhi 
et al., 2018; Arantes et al., 2019; Flecker et al., 2022). 
However, most of the existing knowledge comes 
from large hydropower systems (> 30 MW, ANEEL, 
2020), with high flow regulation and extended water 
residence times (Zhang et  al., 2010; Chaudhari & 
Pokhrel, 2022; Ruhi et al., 2022). On the other hand, 
small hydropower dams (≤ 30  MW, ANEEL, 2020) 
represent approximately 90% of the global hydro-
power facilities (Couto & Olden, 2018). In most 
cases, those facilities are run-of-river systems, con-
sidered less environmentally harmful (Anderson 
et al., 2015; Singh et al., 2015).

Brazilian environmental law defines small hydro-
power dams as having generating  capacities of up 
to 30,000  MW and reservoir areas of up to 13   km2 
(ANEEL, 2017). Because most sites suitable for the 
construction of large hydroelectric dams are already 
occupied by existing dams, and small hydropower 
dams have lower construction costs and are easier to 
license, small dams have been the focus of construc-
tion projects in recent decades (Almeida et al., 2009; 
Fearnside, 2014). Identifying the traits that respond 
to the environmental impacts caused by the presence 
of small hydropower dams is essential because traits 
are less constrained by biogeographic and evolution-
ary patterns and thus can be more widely and consist-
ently applied and compared to other rivers similarly 
affected (Martins et  al., 2021a). This is especially 
important for neotropical rivers, because most data on 
the subject derived from temperate ecosystems (Cor-
tés-Guzmán et al., 2021).

Hydropower dams, even small ones, change the 
natural flows of water, sediments, wood, and nutrients 
(Thomson et al., 2005; Ticiani et al., 2022) and cause 
substantial changes in the structure and dynamics of 
aquatic habitats, both upstream and downstream of 
the dams (Xiaocheng et al., 2008; Wang et al., 2022). 
These changes negatively affect the taxonomic and 
functional diversity of benthic macroinvertebrates 
(Petrin et al., 2013; Wang et al., 2023). Furthermore, 

dam-altered habitats often favor the establishment of 
non-native species (Karatayev et  al., 2010; Linares 
et  al., 2018; Jovem-Azevêdo et  al., 2021), result-
ing in local functional changes (Wang et  al., 2023). 
Thus, changes in the natural characteristics of a river 
impose new environmental restrictions, filtering out 
taxa not adapted to the new conditions and facilitating 
colonization by invasive species (Ruhi et al., 2018).

Different environmental factors act as filters, 
selecting functional traits that enable species to sur-
vive under specific local conditions (Statzner et  al., 
2004; Wong et al., 2019). Calapez et al. (2018) found 
that the respiratory mode responded to low flow and 
reduced dissolved oxygen, resulting in an increase 
in the drift of gill breathers, whereas active dispersal 
(e.g., flying) was affected by the combination of both 
stressors. The homogenization of the aquatic habitat 
resulting from land use (e.g., agriculture, pasture, and 
urbanization) resulted in the loss of macroinvertebrate 
characteristics with low body flexibility and a univol-
tine reproductive cycle (Castro et al., 2018). Thus, to 
characterize the functional composition of benthic 
assemblages, analyses based on multiple functional 
traits have recently been used widely (Dedieu et  al., 
2015; Liu et  al., 2021; Roux & Clinton, 2023). Key 
traits include feeding mode, respiration, voltinism, 
locomotion, and body flexibility and shape (Luiza-
Andrade et al., 2017; Erasmus et al., 2021; Paz et al., 
2022).

Although studies have characterized the effects of 
small hydropower systems on the taxonomic struc-
ture of benthic macroinvertebrate assemblages (e.g., 
Linares et al., 2019; Ferreira et al., 2022; Couto et al., 
2023), there is still a knowledge gap on how the func-
tional structure and composition are affected. As part 
of a large, joint, scientific assessment of the eco-
logical effects of a run-of-river dam in the Pandeiros 
River basin in Brazil, we aimed to develop method-
ologies to support decision-making regarding a possi-
ble decommissioning of the Pandeiros dam, which, if 
realized, will be the first in South America. Previous 
studies in this effort have found significant correlation 
between the presence of the small hydropower dam 
and changes in taxonomic structure (Linares et  al., 
2019), as well as facilitating the establishment of 
invasive species (Linares et al., 2018, 2022).

This multiyear river study can add to studies by 
providing temporal data for the planned dam decom-
missioning. Because benthic macroinvertebrate 
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assemblages have high turnover rates (Datry et  al., 
2016; Libório & Tanaka, 2016), multiyear studies 
can give important insights on how small hydro-
power dams affect the structure and functioning of 
benthic macroinvertebrate assemblages. Thus, our 
data will play a crucial role in assessing the biologi-
cal effects of dam removal. Therefore, our objec-
tive was to understand how a small hydropower 
dam changed the functional structure of benthic 
macroinvertebrate assemblages in a Neotropical 
savanna river. To achieve our objective, we tested 
two hypotheses. (1) The macroinvertebrate func-
tional traits in sites near the dam differ from those 
in free-flowing sites. (2) Sites near the dam support 
a distinct functional diversity and have assemblages 
with lower specialization compared to free-flowing 
sites. We predicted that the functional diversity 
indices (functional richness, functional evenness, 
functional divergence, functional dispersion, and 
functional originality) would have lower values, and 
the assemblages would be more generalist in sites 
close to the dam (Fig. 1).

Methods

Study area

Our sites were in the 145-km-long Pandeiros River, 
Minas Gerais State, southeastern Brazil (Fig. 2). The 
Pandeiros River drainage is a priority conservation 
area in the Neotropical savanna (Cerrado) (Drum-
mond et  al., 2005), being protected by State Law 
No. 11.901, which established the Environmental 
Preservation Area (EPA) Pandeiros (Minas Gerais, 
1995). The Pandeiros River EPA is 380,000  ha and 
is formed by a mosaic of phytophysiognomies in the 
Cerrado biome. The region’s semiarid climate is char-
acterized by average temperatures between 26 °C and 
29 °C (IGAM, 2014). During the dry and rainy peri-
ods studied, average precipitation varied from 14 to 
270 mm, respectively (INMET, 2024).

The small hydropower plant (SHP Pandeiros), 
located in the middle course of the river, was installed 
in 1957, and its reservoir has an area of 280 ha, with 
a free crest dam height of 10.3  m (Fonseca et  al., 
2008). When operational, its turbines produced up to 

Fig. 1  Predictions for trait category responses to the hydro-
electric system. Signs (+) and (−) indicate, respectively, a 
potential increase or potential decrease in the abundance of a 

given trait category (Statzner & Bêche, 2010; Feio & Dolédec, 
2012; Castro et al., 2018; Firmiano et al., 2021)
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4.2  MW (Fonseca et  al., 2008), but its powerhouse 
was deactivated in 2007. Since then, the Pandeiros 
River and its tributaries have been studied (Santos 
et  al., 2015; Martins et  al., 2021b; Junqueira et  al., 
2022) to provide data for decommissioning (Linares 
et al., 2019)

Site selection

We selected six sites (Table 1) to represent the vari-
ation of environmental conditions related to the dam 
and reservoir (Fig.  2). At each site, we measured 
water temperature (°C) and dissolved oxygen (mg/L) 
with a YSI model ProSolo meter, pH with a Digimed 

DM-2P meter, turbidity (NTU) with a Digimed 
DM-TU meter, and conductivity (μS/cm) and total 
dissolved solids (TDS) with a Digimed DM-3P meter. 
In addition, we determined total alkalinity by the 
Gran method (Carmouze, 1994) with titration of 0.01 
N sulfuric acid (Supplementary Material, S1).

Fauna collection and identification

We sampled macroinvertebrate assemblages ten 
times over five years at each site to assess seasonal 
and annual differences. Dry season samples were 
taken in September 2014, April and June 2015, 
May and August 2019. Rainy season sampling 

Fig. 2  Site and study area locations
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occurred in December and January 2014, Febru-
ary 2015, November 2019, and February 2020. We 
collected four substrate samples at each site using 
a kick-net sampler (30 cm aperture, 250 μm mesh, 
and 0.09  m2 area) along a 15 m transect. The sub-
strates were stored in plastic bags filled with 70% 
alcohol. We took the samples to the Laboratory of 
Benthos Ecology at the Universidade Federal de 
Minas Gerais, where we washed them through a 
250-μm mesh sieve. All macroinvertebrates were 
identified under a stereoscopic microscope (32×) 
by  using the  taxonomic keys Merritt & Cum-
mins (1996), Mugnai et  al. (2010), Hamada et  al. 
(2014). We identified Ephemeroptera, Plecoptera, 
and Trichoptera to genus (Olifiers et al., 2004; Pes 
et  al., 2005; Salles, 2006), other macroinverte-
brates to family, and Annelida to subclass because 
of limited taxonomic knowledge for the neotropical 
region. All macroinvertebrates were deposited in 
the Reference Collection of Benthic Macroinverte-
brates, Instituto de Ciências Biológicas, Universi-
dade Federal de Minas Gerais.

Functional trait characterization

We used a database of six traits distributed in 23 
categories to characterize the functional structure of 
macroinvertebrate assemblages (Table  2). We chose 
traits to reflect the organisms’ ability to deal with 
multiple environmental changes, for example, food 
resources, oxygen availability, and life cycle (Mondy 
& Usseglio-Polatera, 2014; Paz et al., 2022). In addi-
tion, we included morphological and mobility adap-
tations linked to flow restrictions, such as body flex-
ibility, body shape, and locomotion. Although some 
studied macroinvertebrates, such as Oligochaeta and 
Corbiculidae, lack an aerial stage in their life cycle, 
most sampled taxa, including certain Coleoptera and 
Hemiptera, have a flying stage. Because flying dis-
persal ability can alter their resilience to disturbances 
(Ding et al., 2017; Oliveira et al., 2024), such as those 
caused by dams, we assigned significant weight to 
this trait in the fuzzy coding approach. Most data 
used to compile the functional traits were obtained 
from studies of neotropical organisms (Tomanova & 

Table 1  Site locations and descriptions

Site Geographic coordinates Dam Proximity Site description

P1 15°23.364″ S 44°54.662″ W Free-flow site upstream of the dam, about 
20 km

Wide channel (> 5 m), shallow water depth 
(< 1 m), and has natural riparian vegetation 
and a sandy bottom substrate

P2 15°26.454″ S 44°49.240″ W Free-flow site upstream of the dam, about 
12 km

Wide channel (> 5 m), shallow water depth 
(< 1 m), and has natural riparian vegetation 
and a sandy bottom substrate

P3 15°29.921″ S 44°45.465″ W Directly affected by the dam, 500 m 
upstream

Wide channel (> 10 m), low depth (< 2 m), 
sandy bottom substrate and alternation 
between areas with natural riparian vegeta-
tion and without vegetation along its banks

P4 15°30.289″ S and 44°45.442″ W Directly affected by the dam, 50 m down-
stream

Narrow channel (< 5 m), a deeper water 
column (> 3 m), sandy sediment in a rocky 
matrix and natural riparian vegetation on its 
banks

P5 15°30.773″ S 44°45.222″ W Located 500 m downstream from the dam Wide channel (> 5 m), low water depth 
(< 1 m), sandy sediment and alternation of 
natural riparian vegetation with deforested 
areas

P6 15°41.669″ S 44°35.390″ W Located 30 km downstream from the dam Wide channel (> 5 m), a deeper water column 
(> 2 m), sandy sediment with a soft bottom 
and alternation of natural riparian vegetation 
and pasture on its banks
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Usseglio-Polatera, 2007; Castro et  al., 2017; Jovem-
Azevêdo et al., ; Amaral et al., 2021; Firmiano et al., 
2021; Martins et  al., 2021a; Linares et  al., 2022). 
When information from neotropical taxa was unavail-
able, we compiled research from North America (Pil-
ière et al., 2016; Poff et al., 2006).

We determined the affinity of each taxon for each 
trait category by using a fuzzy coding approach 
(Chevenet et al., 1994). We assigned a score to each 
taxon describing its affinity to each trait category, 
ranging from 0 (no affinity) to 3 (maximum affin-
ity) (Chevenet et  al., 1994; Tomanova & Usseglio-
Polatera, 2007). For each ‘taxon ×  trait’, the affinity 
scores were then transformed into a relative usage 
frequency distribution by dividing the taxon affinity 
scores by the categories of a fuzzy coding trait by 
their sum. Affinity scores were standardized so that 
their sums were equal to 1, ensuring the same weight 
for each taxon and each trait in subsequent analyses. 
Assemblage trait profiles were obtained by multiply-
ing the frequency of each trait category by the abun-
dance of each species (Gayraud & Philippe, 2001). A 

trait-by-site matrix was created, containing the fre-
quency of each trait at each location, for subsequent 
analysis

Functional diversity

We calculated five complementary functional diver-
sity indices: functional richness (FRic), functional 
evenness (FEve), functional divergence (FDiv) 
(Villéger et al., 2008), functional dispersion (FDis) 
(Laliberté & Legendre, 2010), and functional origi-
nality (FOri) (Mouillot et al., 2013). These compo-
nents of functional diversity reflect different aspects 
of species in functional space (Mason et  al., 2005; 
Rojas et  al., 2021). FRic is defined as the volume 
of the functional space (volume of the convex hull) 
occupied by the species of an assemblage, regard-
less of their abundance (Villéger et al., 2008). FEve 
measures the regularity with which the functional 
space is occupied by the abundance of species in 
an assemblage (Villéger et al., 2008). FDiv quanti-
fies the total proportion of abundance supported by 

Table 2  Functional 
traits and categories 
for freshwater 
macroinvertebrates

Type Trait Categories Code

Life history Voltinism  ≤ 1 reproduction/y Univoltine
 > 1 reproduction/y Multivoltine

Mobility Locomotion/Habitat Burrower Burrower
Crawler Crawler
Clinger Clinger
Swimmer Swimmer
Flyer Flyer

Morphology Respiration Integument Integument
Gill Gill
Plastron Plastron
Spiracle Spiracle

Body flexibility  < 10° Low
 > 10–45° Average
 > 45° High

Body shape Streamlined Streamlined
Flattened Flattened
Cylindrical Cylindrical
Spherical Spherical

Foraging Feeding mode Gathering-collector Gatherer
Shredder Shredder
Scraper Scraper
Filtering-collector Filterer
Predator Predator
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the species of an assemblage within the functional 
trait space (Villéger et  al., 2008). FDis represents 
the mean distance of species from the centroid in 
the resulting multivariate space, weighted by the 
relative abundance of the corresponding species 
(Laliberté & Legendre, 2010). Finally, FOri is the 
weighted average distance between a species and 
the closest species in the functional space (Mouillot 
et al., 2013).

To obtain the five functional diversity indices, 
we used the alpha.fd.multidim function of the mFD 
package (Magneville et  al., 2022) in R (R Devel-
opment Core Team, 2016). We used Gower’s dis-
similarity (Gower, 1966) to create a distance matrix 
with the functional traits table, from which we 
extracted independent axes via Principal Coordi-
nate Analysis (PCoA). We used those axes and the 
taxa abundance matrix to calculate functional diver-
sity indices (Schleuter et al., 2010). We maintained 
the first six PCoA axes after testing the functional 
space quality (Magneville et al., 2022; Supplemen-
tary Material, S2).

Functional specialization

We evaluated the functional specialization of the 
assemblages by using indices proposed by Mondy 
& Usseglio-Polatera (2014). A Taxon Specializa-
tion Index (TSI) was calculated for each taxon and 
each trait. A maximum TSI value (i.e., 1.00) cor-
responds to a truly specialist taxon (i.e., using only 
one trait category), whereas a true generalist taxon 
(i.e., using all trait categories uniformly) exhibits 
a lower TSI value. The community specialization 
index (CSI), which estimates the functional homog-
enization associated with each feature and each site, 
was calculated by averaging the individual stag-
gered TSIs of all taxa weighted by their respective 
log-transformed abundances. Finally, we calculated 
each site’s global specialization index by averaging 
each feature’s CSI. Lower CSI values mean more 
generalist communities. Thus, for a given character-
istic, such as feeding habits, a taxon that is 100% 
predator is categorized as a specialist, whereas a 
taxon that is 50% gathering collector and 50% fil-
tering collector is considered a generalist. Scripts 
for TSI and CSI indices are available in Mondy & 
Usseglio-Polatera (2014).

Data analyses

Temporal analyses

To verify possible seasonal differences, we ran a gen-
eralized linear model (GLM) with a Gaussian error 
structure for each functional diversity index (FRic, 
FEve, FDiv, FDis, and FOri). The assumptions of 
linearity, independence, and homoscedasticity were 
met. Then, we tested  model significances using a 
variance analysis (F test). We did not observe signifi-
cant differences between the dry and rainy seasons, 
nor between the different sampling years, and, there-
fore, grouped all six campaigns as replicas for each 
location.

Functional diversity and assemblage specialization

To test whether the functional diversity indices of 
macroinvertebrate assemblages in dam-affected sites 
showed a different profile from those in free-flowing 
sites, we performed a one-way analysis of variance 
(ANOVA). We then performed a post hoc Tukey 
HSD (Honest Significant Difference) test to iden-
tify significant differences (P < 0.05) between sites. 
Data normality and homoscedasticity were analyzed 
and confirmed by running Shapiro–Wilk and Bartlett 
tests, respectively.

Trait responses to environmental variables

To identify the bivariate association between traits 
and environmental variables, we performed both 
RLQ and fourth-corner methods (Dray et  al., 2014; 
Dray & Legendre, 2008). RLQ analysis maximizes 
the covariance between traits and environmental vari-
ables mediated by species abundance (Dolédec et al., 
1996). In contrast, the fourth-corner method facili-
tates quantifying and testing all positive and nega-
tive bivariate correlations between each trait category 
and each environmental variable (Dray et al., 2014). 
The Monte Carlo permutation test (9999 unrestricted 
permutations, P < 0.05) was used to test the global 
significance of model 2 (H1: assumes no relation-
ship between R and L) and model 4 (H2: assumes no 
relationship between L and Q) (Dolédec et al., 1996). 
Fourth-corner analysis was then used to identify the 
relationship between trait categories and environmen-
tal variables based on the outcome of RLQ ordination 



 Hydrobiologia

Vol:. (1234567890)



Hydrobiologia 

Vol.: (0123456789)

(Pallottini et  al., 2017). The false discovery rate 
method adjusted the P-values for the fourth-corner 
analysis (Dray et al., 2014).

A community-weighted means of trait values 
(CWM) analysis determined individual trait category 
differences among the sites. CWM is a mean trait 
value weighted by the relative abundance (Díaz et al., 
2007) and represents the expected functional value of 
a random assemblage sample. We explored the differ-
ences in the weighted averages of the assemblage of 
trait category values (CWM) that contributed to the 
differences (P < 0.05) between the sample sites using 
the Kruskal–Wallis test. Trait categories showing 
significant differences between sampling sites were 
further tested using a pairwise post hoc Dunn’s test, 
where the multiple comparisons were adjusted by 
Bonferroni correction.

All statistical and graphical analyses were per-
formed with R software (R Development Core Team, 
2016), using the vegan (Oksanen et  al., 2017), ade4 
(Chessel et al., 2004), and FD (Laliberté & Legendre, 
2010) packages.

Results

Functional diversity and assemblage specialization

We found a total of 46,711 individuals comprised of 
86 different taxa. Functional richness (F 5,54 = 2.22, 
P = 0.06) and functional evenness (F5,54 = 0.62, 
P = 0.68) did not differ significantly among the sam-
pling sites (Fig.  3). On the other hand, functional 
divergence (F 5,54 = 3.58, P = 0.01), functional disper-
sion (F 5,54 = 4.60, P = 0.001), and functional origi-
nality (F 5,54 = 7.16, P ≤ 0.001), differed significantly 
among the sites (Fig.  3) (Table  S1, Supplementary 
Material). Site 3 had the highest functional originality 
(0.47 ± 0.03) which differed significantly from all the 
other sites, as well as a significantly higher functional 

divergence than site 5, but did not differ significantly 
from the other sites at a P < 0.05. Site 3 also had a 
significantly lower functional dispersion in relation 
to sites 1 and 4 (Fig. 3). Furthermore, the community 
specialization index (CSI) was not different between 
sampling locations (F5,54 = 1.85, P = 0.12, Fig.  4). 
The low CSI values, indicated generalist macroinver-
tebrate assemblages at all sites. 

Trait responses to environmental variables

The RLQ and fourth-corner analyses revealed no sig-
nificant relationship between the abundance of taxa 
and environmental variables (model 2, P = 0.91), nor 
the abundance of taxa and functional traits (model 
4, P = 0.10) (Table  3). However, the composition 
of individual traits varied among sampling sites. 
We found significant differences (P < 0.05) among 
sample sites for 18 CWM trait categories (Table 4). 
Voltinism, body shape, and flexibility were the most 
affected functional traits, showing significant differ-
ences at a P < 0.05 for all trait categories (Table  4). 
Univoltism, spherical shape, and low body flexibil-
ity were found more often in the dam sites 3 and 4 
(Fig. 5). However, multivoltism, flat body shape, and 
high body flexibility were associated with sites more 
distant from the dam (Fig. 5).

Discussion

Trait responses to water quality variables

No water quality variable influenced the trait com-
position of macroinvertebrate assemblages among 
the sampling sites. However, the first RLQ axis was 
responsible for the largest fraction of the explained 
variation. Previous studies have shown a relation-
ship between environmental parameters and the 
functional structure of macroinvertebrates affected 
by small hydropower systems (Mueller et al., 2011; 
Tupinambás et  al., 2014), whereas others have not 
(e.g., Principe, 2010; Scotti et al., 2022). Land use 
degrades water quality and assemblage composi-
tion (Moya et  al., 2011; Castro et  al., 2017), but 
the Pandeiros River drains an Environmental Pres-
ervation Area (Minas Gerais, 1995). Its basin lacks 
intensive economic activities and has  low popula-
tion density (IGAM, 2014) to maintain its water 

Fig. 3  Differences in functional richness (FRic), functional 
evenness (FEve), functional divergence (FDiv), functional 
dispersion (FDis), and functional originality (FOri) of mac-
roinvertebrates. Horizontal lines are medians, and the ends of 
boxes are quartiles. Vertical lines are confidence intervals, and 
circles represent outliers from six site visits. Different letters 
indicate significant differences (P < 0.05) between disturbance 
categories. Post hoc Tukey HSD (Honest Significant Differ-
ence) tests were used for pairwise comparisons

◂
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quality. However, assemblage traits may have been 
associated with measurements of physical habitat 
structure (Moya et al., 2011; Martins et al., 2021b; 
Kaufmann et  al., 2022). Dams form reservoirs, 
which alter flow regimes, accumulate sediments, 
and increase widths and depths (Xiaocheng et  al., 
2008). Although the SHP Pandeiros is a small dam 
with short water residence time (Fonseca et  al., 
2008), the differences in trait composition probably 
resulted from physical changes in the sites influ-
enced by the dam and reservoir.

Functional diversity and assemblage specialization

Our first hypothesis, that sites near the dam would 
support a distinct functional diversity and have less-
specialized assemblages than free-flowing sites, was 
partially corroborated. Sites close to the dam sup-
ported a distinct functional diversity. Specifically, site 
3 (reservoir), directly upriver from the dam, exhibited 
higher functional originality (FOri) compared to the 
other sites and had significantly higher functional 
divergence (FDiv) than site 5. The increase in FOri 
and FDiv is an indicator of niche differentiation, sug-
gesting that the reservoir is composed of taxa shar-
ing few functional characteristics with nearby taxa 
(Mouillot et al., 2013; Rojas et al., 2021). This result 
is related to the lower FDis observed at site 3 com-
pared to the free-flowing sites 1 and 4, revealing a 
prevalence of taxa with uniform functional attributes 
in the reservoir. An increased functional dispersion 

Fig. 4  General Community Specialization Index (CSI) for 
macroinvertebrate assemblages at each sampling site. Horizon-
tal lines are medians, and the ends of boxes are quartiles. The 
vertical lines are confidence intervals the six site visits

Table 3  Multivariate analysis with (A) separate analysis 
showing eigenvalues and percentages of variance that represent 
the first axis of each analysis, and (B) RLQ analysis showing 
eigenvalues and percentage of total variance that accounted for 
the first RLQ axis

Axis 1

Eigenvalue % of variance

(A) Separate analysis
Environment (PCA) 3.61 51.6
Abundance (COA) 0.23 26.9
Trait (FCA) 0.23 33.9
(B) RLQ analysis
Eigenvalue 0.002 48.5
Covariance 0.043
Correlation 0.096
R/RLQ 2.225 61.5
L/RLQ 0.096 20
Q/RLQ 0.091 39.4

Table 4  Kruskal–Wallis results concerning the differences 
among sampling sites for each trait category. Significant P-val-
ues (P < 0.05) are in bold

Trait Category Chi-Square P

Respiration Integument 21.776  < 0.001
Gill 16.273  < 0.001
Plastron 19.166  < 0.001
Spiracle 10.806 0.055

Voltinism Univoltine 26.448  < 0.001
Multivoltine 26.448  < 0.001

Locomotion Burrower 9.795 0.081
Crawler 20.923  < 0.001
Clinger 8.086 0.151
Swimmer 15.071 0.010
Flyer 16.97 0.004

Body flexibility Low 28.942  < 0.001
Average 13.187 0.021
High 22.642  < 0.001

Body shape Streamlined 14.403 0.013
Flattened 21.684  < 0.001
Cylindrical 23.028  < 0.001
Spherical 27.719  < 0.001

Feeding mode Gatherer 18.361 0.002
Shredder 12.727 0.026
Scraper 4.437 0.488
Filterer 25.704  < 0.001
Predator 5.943 0.311
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indicates that taxa exhibited higher functional dis-
similarity (Cooke et al., 2019), suggesting that func-
tional traits are better distributed in free-flowing sites 
along the Pandeiros River. However, out of the five 
functional diversity metrics, the dam and reservoir 
affected three (FOri, FDiv, and FDis). Furthermore, 
the dam and reservoir did not change the specializa-
tion of macroinvertebrate assemblages. When a com-
munity has a low CSI (Community Specialization 
Index), the specialization of taxa within that com-
munity is reduced. This may indicate that the taxa 
present in the assemblages had a wide range of eco-
logical preferences, being able to adapt to different 
environmental conditions. In other words, a low CSI 
suggests that the community is composed of gener-
alist species, which are not strongly specialized in 
resource or habitat use (Mondy & Usseglio-Polatera, 
2014).

Linares et  al. (2019) studied macroinvertebrate 
assemblages in the Pandeiros River. They pointed 
out a change in the functional feeding groups, with 
an increased abundance of filterer taxa at the dam 
site compared to free-flowing sites. In addition, they 
found that the reservoir favored an increase in non-
native invasive taxa. The persistence of non-native 
species overlaps with native species in the functional 
space, resulting in an increase in FDiv and FOri 
(Rojas et  al., 2021). These increases resulting from 
the presence of non-native species may be related to 
negative effects on the ecosystem, such as niche dis-
placement and loss of native species (Carboni et al., 
2021; Haubrock et al., 2021).

The hypothesis that the dam and reservoir would 
result in reduced functional complexity of local ben-
thic macroinvertebrate assemblages was not corrobo-
rated. The macroinvertebrate assemblages at our sites 
were primarily composed of generalist taxa, suggest-
ing the sampling sites were functionally more homo-
geneous, although the reservoir caused significant 
changes in functional diversity indices. The Pandeiros 
River substrate is predominantly sand and homogene-
ous throughout its course (Linares et al., 2018; Mar-
tins et al., 2021b) and this low substrate heterogene-
ity reduces habitat complexity, directly affecting the 
functional specialization of benthic macrofauna (Cas-
tro et al., 2018; Firmiano et al., 2021). This is because 
specialized taxa occupy restricted and highly suitable 
habitats, whereas generalists can occupy many habi-
tats (Clavel et al., 2011; Mazzucco et al., 2015).

Our second hypothesis, that the composition of 
macroinvertebrate functional traits in dam and res-
ervoir sites would differ from free-flowing sites, was 
corroborated. We found that the composition of indi-
vidual traits varied significantly among sampling sites 
despite finding no significant relationships between 
environmental metrics and functional traits. The 
trait composition responded to the dam and reser-
voir, locally favoring certain assemblage traits. Body 
shape is linked to resistance or resilience to substrate 
sedimentation (Dolédec et al., 2011). Organisms that 
live in areas with fine sediment accumulations gener-
ally have a cylindrical shape, capable of penetrating 
the fine sediment (Ding et al., 2017), which explains 
the predominance of this body shape in the reservoir 
site (site 3). In contrast, the streamlined body shape 
was predominant in the free-flowing site (site 1). 
The faster flows mean fewer fine sediments, which 
select organisms with more hydrodynamic bodies 
(Ding et al., 2017). Other studies have also reported 
that body shape confers adaptations to changes in 
flow and the relationship of the organism with the 
substrate (Edegbene et  al., 2021; Silva et  al., 2021). 
Thus, different traits are selected as the hydrological 
disturbance gradient changes (Feio & Dolédec, 2012).

For the site nearest the dam (site 4), the reten-
tion of fine sediments by the dam and the presence 
of rocky outcrops (Linares et al., 2019) favored taxa 
with low body flexibility (e.g., Naucoridae). Coarse 
substrates offer advantages to taxa with this charac-
teristic, facilitating the occupation of the interstices of 
the rock as protection (Yao et al., 2017) and reducing 
the possibility of being carried away by the current. 
Therefore, we observed that under coarse substrate 
conditions, faster current can be a limiting factor for 
lotic taxa, resulting in a more hydrodynamic body 
shape and low body flexibility.

On the other hand, organisms with multivoltine 
reproductive cycles were associated with the reservoir 
site (site 3), contrary to our predictions. Changes in 
the number of reproductive cycles are consistently 
related to environmental disturbances, with a higher 
frequency of multivoltine individuals in the most dis-
turbed locations, which facilitates rapid recoloniza-
tion of disturbed aquatic environments (Díaz et  al., 
2007; Castro et al., 2018).

The observed functional structure in the mac-
roinvertebrate assemblages indicated that the small 
hydropower dam and reservoir acted as a local 
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environmental filter, selecting unique traits that allow 
some taxa to occupy those conditions. However, 
some traits did not differ significantly among the 
dam/reservoir sites and the free-flowing sites, which 
can be explained by the low environmental variabil-
ity and the predominance of generalist individuals. 
Ceneviva-Bastos et al. (2017) reported that generalist 
aquatic insects showed trophic plasticity and oppor-
tunistic feeding habits, leading to greater niche over-
lap. Therefore, the use of multiple traits improves our 
ability to assess the functional response of macroin-
vertebrate assemblages to gradients of environmen-
tal disturbance (Feio & Dolédec, 2012; Castro et al., 
2017).

The absence of significant differences in func-
tional diversity indices between the dry and rainy 
seasons can be attributed to at least three environ-
mental factors specific to the Pandeiros River. (1) 
The river location within a protected and relatively 
well-preserved area contributes to its overall environ-
mental stability, which buffers the assemblages from 
the typical seasonal fluctuations observed in more 
disturbed or heterogeneous systems. This stability 
could result in a reduced impact of seasonal varia-
tions on the functional structure of the assemblages 
(Baker et al., 2023). (2) The relative homogeneity of 
habitats along the river’s course, predominantly char-
acterized by sandy substrates (Linares et  al., 2019), 
plays a crucial role in maintaining functional stability 
across seasons. The lack of habitat heterogeneity may 
limit the range of ecological niches available, lead-
ing to a more uniform assemblage structure that does 
not vary significantly with seasonal changes in flow 
or resource availability (Frainer et al., 2018). (3) The 
Pandeiros River rarely experiences extreme seasonal 
flow fluctuations because of its low annual rainfall 
(INMET, 2024). The absence of pronounced flood 
pulses, often responsible for restructuring benthic 
communities (O’Leary & Wantzen, 2012), facilitates 
more continuous and stable assemblages through-
out the year. These three reasons help explain the 
observed consistency in functional diversity indices 
between the dry and rainy seasons.

Summary and conclusions

This study expands the knowledge of small hydro-
power system effects on selecting traits and func-
tional diversity indices of macroinvertebrate assem-
blages at upstream and downstream sites. The FDis, 
FDiv, and FORi indices showed a strong relation-
ship with the environmental pressures imposed by 
the dam, being sensitive to local hydrological con-
ditions. Although the sampling sites showed func-
tional homogenization, differences in reproductive 
cycles, body shape, and body flexibility indicate 
that certain traits  were locally selected upstream 
and downstream of the dam. Additionally, the mac-
roinvertebrate functional traits found in our study 
can be used for biomonitoring the decommissioning 
of other neotropical savanna river dams. Additional 
in  situ studies of the functional structure of ben-
thic macroinvertebrate assemblages should investi-
gate the effects of riparian vegetation cover, ripar-
ian disturbance, channel morphology, habitat type, 
substrate quality, physical habitat complexity, and 
nutrient concentrations downstream and upstream 
of hydroelectric systems (Jimenez-Valencia et  al., 
2014; Silva et al., 2018; Herlihy et al., 2020; Mar-
tins et al., 2021b; Kaufmann et al., 2022).
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