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A B S T R A C T

Water level regulation is one of the most common anthropogenic disturbances of lentic ecosystems, which is
especially evident in shallow lakes. The objective of this study was to assess the ecological effects of water level
regulation in a shallow lake using thermodynamic indicators to support decision makers in a dam decom-
missioning process. For that we tested three hypotheses: 1) the regulated lake supports lower taxonomic di-
versity than the naturally fluctuating lake; 2) the structure of the benthic macroinvertebrate assemblage is
different in the regulated lake than in the naturally fluctuating lake; 3) the regulated lake supports less complex
benthic macroinvertebrate assemblages than the naturally fluctuating lake. Our results show that the first hy-
pothesis, tested using taxa richness, Shannon-Wiener and Simpson diversity indices, was not validated. The
second hypothesis was tested using taxonomic composition and was validated, with the two types of lakes
exhibiting dissimilar macroinvertebrate assemblages. The third hypothesis, tested using two thermodynamic
based indicators, eco-exergy and specific eco-exergy, was partially supported, which was illustrated, overall, by
higher eco-exergy (degree of complexity) of the benthic assemblages in the naturally fluctuating lake, although
the specific eco-exergies (capacities to use external energy resources) were similar. As a whole, our results
endorse the importance of natural water level fluctuations as a driving force in shallow lake ecosystems and
reinforced the idea that dam decommissioning is a good option for restoring natural conditions in this type of
ecosystem.

1. Introduction

Water level fluctuation is an essential factor in structuring lentic eco-
systems (Wantzen et al., 2008). This process can enhance the production
of a lake, carrying nutrients from rivers or surrounding terrestrial eco-
systems, leading to accumulation and resuspension of nutrient-rich organic
matter (Gownaris et al., 2018). This is especially true for floodplain lakes,
the smaller ones of which are often called lagoons or alcoves. Lake water
level fluctuation patterns depend on many natural factors, such as fre-
quency and intensity of precipitation, floodplain topography, and eva-
poration rates (Kutyła, 2015), as well as human uses.

Water level regulation, typically involving the construction of dams,
is one of the most common anthropogenic disturbances of lentic and
lotic ecosystems (e.g., Bednarek, 2001; Poff et al., 1997; Stanford and
Ward, 2001). Extreme drawdowns of reservoirs and lakes, including
those from climate change, may be indicators of anthropogenic dis-
turbance (USEPA, 2016). The impacts of water level regulation are

especially evident in shallow lakes, in which even small variations in
the water level can cause significant shifts in nutrient loads, water
quality and physical habitat condition (Terborgh et al., 2018). Such
changes often result in altered species composition, community struc-
ture, and energy flow, which are highly complex and difficult to predict
(Cott et al., 2008). Most studies focusing on the effects of changes in
patterns of water level fluctuation focus on aquatic macrophytes (e.g.,
Agostinho et al., 2004; Brundu, 2015; dos Santos and Thomaz, 2007;
Fleming and Dibble, 2015) and plankton assemblages (e.g., Agostinho
et al., 2009; da Motta Marques et al., 2019; Fantin-Cruz et al., 2011),
while the effects on other taxa, such as benthic macroinvertebrates,
have been relatively unexplored, particularly in tropical lakes (but see
Ruocco et al., 2018; Klein et al., 2018).

Benthic macroinvertebrates are among the most ubiquitous and
diverse taxa in freshwater ecosystems and are widely used as bioindi-
cators because of their ability to rapidly respond to changes in their
environments (Cummins et al., 2005; Macedo et al., 2016; Merritt et al.,
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2008; Morais et al., 2016). Assessments of structural characteristics of
benthic macroinvertebrate assemblages can provide insights into eco-
system functioning (Azevêdo et al., 2015; Linares et al., 2018a).

Both eco-exergy and specific eco-exergy have been used as ecolo-
gical indicators in recent decades (Marques et al., 2003; Veríssimo
et al., 2016; Xu et al., 1999). Eco-exergy has been widely and suc-
cessfully used in assessments of estuaries (Marques et al., 1997;
Veríssimo et al., 2016), rivers (Linares et al., 2018a), streams (Linares
et al., 2018b; Nguyen et al., 2014), lakes (Marchi et al., 2012; Zhang
et al., 2003) and reservoirs (Linares et al., 2017; Molozzi et al., 2013).

Eco-exergy is an estimation of both the assemblage biomass in an
ecosystem and the genetic information embedded in that biomass
(Jørgensen and Marques, 2001). Thus, it constitutes a proxy of eco-
system complexity and stability (Li et al., 2016; Linares et al., 2017; Xu
et al., 1999). On the other hand, specific eco-exergy is defined as the
total eco-exergy divided by the total assemblage biomass, which is an
estimate of the potential of an assemblage to use the energy and ma-
terials available to it, independently of its biomass (Jørgensen, 2007;
Jørgensen et al., 1995; Susani et al., 2006). Eco-exergy and specific eco-
exergy have been used as complementary ecological indicators to assess
ecosystem state and complexity, expressing shifts in species composi-
tion and trophic structure (Linares et al., 2018a; Marques et al., 2003;
Molozzi et al., 2013). Assemblages with high values of both indicators
are presumed to have greater biological diversity, functional re-
dundancy, stability and resilience, which are characteristics of more
complex ecosystems (Salas et al., 2005). Thus, a disturbed ecosystem is
expected to exhibit lower eco-exergy and specific eco-exergy when
compared to an undisturbed ecosystem (Jørgensen, 2007).

This study is part of a large joint scientific assessment of the ecological
effects of a run-of-river dam in the Pandeiros River Basin, in Brazil. That
assessment aims to develop ecological assessment methodologies to sup-
port decision making regarding a possible decommissioning of the
Pandeiros Dam, which if realized will be the first in South America.
Previous results (e.g. Linares et al., 2018a, 2019) are being discussed with
members of the local community, state agencies, public prosecutor’s office,
river basin committee and Brazil’s national hydropower regulation agency
(ANEEL). These environmental stakeholders are defining the best sus-
tainable options for decommissioning the Pandeiros Dam. This study will
help close the gap of this management decision about rehabilitation of
river natural flow using benthic thermodynamic indicators.

In this context, our objective was to provide additional ecological in-
formation to decision makers by assessing the ecological condition of a
regulated lake using thermodynamic oriented indicators applied to the
benthic assemblages. We compared the structure and composition of the
benthic macroinvertebrate assemblages from a regulated lake and a
naturally fluctuating one, downstream of the run-of-river hydropower
reservoir. Three hypotheses were tested. 1) The regulated lake supports
lower assemblage diversity than the naturally fluctuating lake, thus pre-
dicting that the regulated lake would display lower taxa richness and
lower Shannon-Wiener and Simpson index scores than the naturally
fluctuating lake. 2) The structure of benthic macroinvertebrate assem-
blages is different in the regulated lake than in the naturally fluctuating
lake, thus predicting that benthic macroinvertebrate assemblages in the
two lakes would differ in taxonomic composition and functional feeding
group abundances. 3) The regulated lake supports less complex benthic
macroinvertebrate assemblages than the naturally fluctuating lake, thus
predicting that the eco-exergy and specific eco-exergy of the benthic
macroinvertebrate assemblage would be lower in the regulated lake than
in the naturally fluctuating lake.

2. Material and methods

2.1. Study area

This study was conducted in marginal lakes of the Pandeiros River
Basin, Minas Gerais state, Brazil. The Pandeiros River is an important

left bank tributary of the São Francisco River, with an approximate
length of 145 km. An Area of Environmental Protection (AEP) with
almost 4000 km2, the largest unit for sustainable use in Minas Gerais
state, covers the entire Pandeiros River Basin in the municipalities of
Januária, Bonito de Minas, and Cônego Marinho (Lopes et al., 2010).
The Pandeiros River Basin floodplains are among the top priority areas
for conservation in the neotropical savanna, considered by Minas Gerais
state law to be of “Special Biological Importance” because of their
unique nature regarding its state and high biodiversity (Drummond
et al., 2005). The AEP-Pandeiros was created to protect the Pandeiros
wetlands and the biological diversity in the surrounding area, which are
considered the nursery of most migratory fish species of the São Fran-
cisco River Basin (Santos et al., 2015). The Pandeiros hydropower dam
was installed in 1957, and its reservoir covers 280 ha, with a free-crest
dam height of 10.3m (Fonseca et al., 2008). The powerhouse was de-
activated in 2007 and since then, all economic activities of the dam and
reservoir have ceased.

Multidisciplinary teams have been studying the Pandeiros River
Basin, with a special focus on the prospect of a future dam decom-
missioning project (Linares et al., 2018a, 2019). A strategic site for the
decommissioning process is a single marginal shallow lake (P1; Fig. 1)
linked to the reservoir by a series of channels. This lake has an area of
14.93 ha and a maximum depth of 2m. Because of the presence of the
reservoir, its water level fluctuation is regulated, varying less than
30 cm between dry and wet seasons and constituting a unique en-
vironment in the Pandeiros River Basin. Recovery of its natural fluc-
tuation regime and its proximity to human populations make this lake a
strategic target for ecological assessment prior to dam decom-
missioning.

To assess the effects of water level regulation on benthic macro-
invertebrate assemblages we compared the unique regulated lake with
another marginal lake in the Pandeiros River floodplain (P2; Fig. 1),
located 35 km downriver and not influenced by the dam (Linares et al.,
2018a,b; Linares et al., 2019). This other lake has natural water level
fluctuations typical of non-regulated shallow lakes in the region, with a
variation of more than 1m between dry and wet seasons (Drummond
et al., 2005). This lake has an area of 13.25 ha and a maximum depth of
2m. Due to the constrains of the Pandeiros dam project, our team was
only able to sample one naturally fluctuating lake, which therefore
limits our capacity for generalization based on these results.

In order to characterize the habitat of the sampled lakes, physical
and chemical variables of the water column were measured (Table 1).
At each lake water temperature, turbidity, pH, conductivity and total
dissolved solids (TDS) were measured in situ by a portable multiprobe
model YSI 6600. Water samples were taken to measure in laboratory
the water contents of phosphate, total nitrogen, nitrate and nitrites.

2.2. Benthic macroinvertebrate sampling and processing

We sampled the macroinvertebrate assemblages in both lakes six
times, covering both the dry (September 2015, April 2016, June 2016)
and the rainy (December 2015, January 2016, February 2016) seasons.
Each time, at each lake, we sampled a single 15m transect, randomly
selected along the margin, with the point of entrance randomly selected
through satellite images. The transects were oriented from the margin
to the center of the lakes, and we sampled the same transects each visit.
Four kick net sub-samples, 5 m apart from each other, were collected
along the transect through use of a D-net (30 cm opening, 500 μm mesh)
in an area of 0.09m2. The sub-samples were combined into a single
sample in the data analysis, representing a total area of 0.36m2 per site
visit. Organisms collected from each sub-sample were stored in plastic
bags, fixed in 10% formalin, and later washed in the laboratory,
through a sieve with 500 μm mesh size.

We sorted and identified all macroinvertebrates specimens under a
stereomicroscope using appropriate taxonomic keys (Hamada et al.,
2014; Merritt and Cummins, 1996; Mugnai et al., 2010). Non-native
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invasive Melanoides tuberculata (Thiaridae, Gastropoda) individuals
were identified to species level. The other taxa were identified to family
(Insecta), class (Bivalvia) or subclass (Annelida), a taxonomic resolu-
tion that saves labour time without compromising the performance of
the indices used (Silva et al., 2017; Whittier and Van Sickle, 2010).
Additionally, the macroinvertebrate taxa were classified into functional
feeding groups (gathering-collectors, filtering-collectors, shredders,
scrapers, or predators) following specialized literature (Cummins et al.,
2005; Ramirez and Guitiérrez, 2014; Tomanova et al., 2006). Speci-
mens were fixed in 70% alcohol and deposited in the Reference Col-
lection of Benthic Macroinvertebrates, Instituto de Ciências Biológicas,

Universidade Federal de Minas Gerais, Brazil.

2.3. Biomass estimation

Dry-mass biomass (g/m2) was estimated for each sampling site visit
through use of length-weight equations (Benke et al., 1999; Johnston
and Cunjak, 1999; Miserendino, 2001; Smock, 1980; Stoffels et al.,
2003). Each specimen of each taxon, up to 100, was photographed in a
stereomicroscope (model Leica M80) equipped with a digital camera
(model Leica IC 80 HD). Each photographed specimen’s length was
measured using Motic Image Plus 2.0 software.

2.4. Eco-exergy calculation

Eco-exergy was calculated using the following equation (Jørgensen
et al., 2010):

=
=

EX ici
i

i 0

where βi is a weighting factor based on the genetic information con-
tained in the macroinvertebrate taxa (i). It was defined by Jørgensen
et al. (2005) based on the number of codifying genes of each taxon
(Table 2). The factor ci is biomass of each macroinvertebrate taxon.

Specific eco-exergy is given by the following equation:

=SpEX EX
BM

where EX was the assemblage total eco-exergy and BM was the as-
semblage total biomass.

Fig. 1. Locations of the Pandeiros River Basin, Pandeiros PCH and the sampling sites, the regulated lake (P1) and the non-regulated lake (P2).

Table 1
Physio-chemical variables of the studied lakes.

Variable P1 P2

Mean Standard Deviation Mean Standard Deviation

Water Temperature 25.83 4.06 25.29 2.45
pH 7.32 0.36 6.85 0.32

Conductivity 71.15 6.03 94.05 14.93
Total Dissolved

Solids 35.47 22.14 34.55 4.97
Turbidity 2.34 1.35 15.05 21.99

Dissolved Oxygen 5.65 1.37 5.70 2.25
Alcalinity 588.68 164.36 615.62 50.82

Total Nitrogen 0.07 0.02 0.07 0.02
Total Phosphorus 9.12 5.13 12.99 5.58
Orthophosphate 4.97 2.30 6.04 3.08

Nitrates 0.01 0.01 0.01 0.01
Nitrites 0.06 0.02 0.07 0.04
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2.5. Data analysis

To test for temporal differences in macroinvertebrate structure and
composition among sites, we ran a preliminary test using a Generalized
Linear Model (GLM) for all tested indices (taxa richness, Shannon-
Wiener, Simpson diversity, eco-exergy and specific eco-exergy), and
then tested model significance with an analysis of deviance. Because
these tests failed to detect significant temporal differences, we pooled
all six samples for each lake in our subsequent procedures.

To test if the regulated lake supported lower diversity than the
naturally fluctuating one, we estimated taxa richness, Shannon-Wiener
and Simpson diversity indices for both lakes. We then tested the dif-
ference between the values of these indices calculated for both lakes,
using a Generalized Linear Model (GLM) with a Poisson error structure
for richness and a Gaussian error structure for the other indices. The
model significance was tested by an Analysis of Deviance (chi-squared
and F test, respectively).

PERMANOVA (1000 permutations) was used to test if differences in
the structure of benthic macroinvertebrate assemblages between the
two lakes were significant. Moreover, differences in proportion of the
five functional feeding groups (gathering-collectors, filtering-collectors,
shredders, scrapers, and predators) between the two lakes were tested
using a General Linear Model (GLM) with a quasibinomial error
structure. The model’s significance was tested by an Analysis of
Deviance (F test).

Finally, to evaluate if macroinvertebrate assemblages are less
complex in the regulated lake than in the naturally fluctuating one, we
used a Generalized Linear Model (GLM) with a Gaussian error structure
to test the significance of differences in the values of eco-exergy and
specific eco-exergy calculated for each lake. Model significance was
tested by an Analysis of Deviance (F test).

3. Results

We collected a total of 3460 benthic macroinvertebrates and 44
taxa. Regarding diversity, none of the indices tested (taxa richness,
Shannon-Wiener diversity index or Simpson diversity index) showed
significant differences between the two lakes, however richness was
consistently higher in the unregulated lake. (Fig. 2). Regarding as-
semblage structure, PERMANOVA results (F11= 3.6986, p=0.01898)
indicated that taxonomic composition was significantly different be-
tween the two lakes, as were the proportions of gathering-collectors,
filtering-collectors and scrapers (Fig. 3). In fact, gathering-collectors
were significantly more abundant (F11= 14.683, p=0.003309) in the
regulated lake, whereas filtering-collectors (F11= 6.1654,
p=0.03237) and scrapers (F11= 32.173, p= 0.0002061) were pre-
dominant in the naturally fluctuating one. Shredders (F11= 0.17669,
p=0.1541) and predators (F11= 0.2914, p=0.6012) did not exhibit
significant differences in abundance between the two lakes. Regarding
thermodynamic indicators, the benthic macroinvertebrate assemblages
had significantly higher eco-exergy values in the naturally fluctuating
lake (F11= 7.0621, p= 0.024) (Fig. 4), but we found no significant
difference in specific eco-exergy (F11= 0.3606, p=0.5619).

4. Discussion

Our three hypotheses were only partially supported. Our first hy-
pothesis, that regulated lakes support lower diversity than fluctuating
lakes, was not supported. Our second hypothesis, that assemblage
structure would differ between the two lakes, was confirmed. Finally,
our third hypothesis that regulated lakes support less complex benthic

Table 2
Exergy weighting factors for benthic macroinvertebrate assemblages,
based on Jørgensen et al. (2005).

Organisms Energy Conversion Factor (β)

Virus 1.01
Bacteria 8.5
Algae 20
Yeast 17.4

Cnidaria 91
Platyhelminthes 120
Gastropoda 312
Bivalvia 297
Crustacea 232
Coleoptera 156
Diptera 184

Hymenoptera 267
Lepidoptera 221
Other Insecta 167

Fish 499

Fig. 2. Taxonomic richness, Shannon-Wiener diversity index and Simpson diversity index at the sampled marginal lakes, the regulated lake (P1) and the non-
regulated lake (P2). Bold horizontal lines=medians; boxes= 25th and 75th percentiles; vertical lines= ranges; circles= outliers calculated from six site visits.
Same letters indicate lack of significant difference.

Fig. 3. Functional feeding group relative abundance at the sampled marginal
lakes, the regulated lake (P1) and the non-regulated lake (P2). Same letters
indicate lack of significant difference.
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macroinvertebrate assemblages than naturally fluctuating ones, was
supported by eco-exergy, but not specific eco-exergy.

Differences in taxonomic composition illustrate the ecological con-
ditions to which the lakes are exposed. Gathering-collector taxa, such as
oligochaetes and chironomid larvae, were the dominant group in the
regulated lake, suggesting that the benthic macroinvertebrate assem-
blages depend largely on organic matter deposited in the sediment. This
can be explained by the lack of natural disturbances resulting from
water level fluctuations, which much more likely allows the accumu-
lation of fine particulate organic matter in the sediment, leaving it
available to burrowing benthic taxa (White et al., 2010). In the natu-
rally fluctuating lake, on the other hand, benthic macroinvertebrate
assemblages were dominated by filtering-collectors and also included a
significantly higher abundance of scrapers, which suggests that water
level fluctuations play an important role in the organic matter re-
suspension and resultant availability for consumers (Cott et al., 2008;
Gownaris et al., 2018; Magbanua et al., 2015).

The fact that benthic macroinvertebrate assemblages had higher
eco-exergy in the naturally fluctuating lake can also be explained by the
higher level of available energetic resources represented by re-
suspended organic matter, resulting in a higher overall degree of
complexity, stability and development of the macroinvertebrate as-
semblage (Jørgensen, 2007; Jørgensen and Fath, 2004; Ludovisi and
Jørgensen, 2009). Comparable situations have been observed in sys-
tems with non-excessive nutrient enrichment and other forms of higher
energy input, including headwater streams (Linares et al., 2018b), es-
tuaries (Marques et al., 1997) and hydropower reservoirs (Molozzi
et al., 2013).

The fact that the benthic macroinvertebrate assemblages did not
show significant differences in specific eco-exergy can be explained by
the predominance, in both lakes, of predator taxa such as Odonata
nymphs and Belostomatidae (Heteroptera), typical in lentic ecosystems
(Benke et al., 2001; Benke and Huryn, 2010; Cummins et al., 2005). The
high relative abundance of predator taxa in both lakes smoothed the
differences in the overall specific eco-exergy calculated, expressing
therefore, in average, relatively alike capacities to use external energy
resources and more or less similar complexities of the benthic macro-
invertebrate assemblages in the two types of lakes.

As a whole, our results illustrate the importance of natural water
level fluctuations as a driving force in shallow lake ecosystems, as
previously observed (Agostinho et al., 2004; Thomaz et al., 2015;
Wantzen et al., 2008). Regarding the perspective of a future dam de-
commissioning, we have shown that fluctuating water levels affect the

structure and function of benthic macroinvertebrates in shallow lakes.
In regulated lakes, benthic assemblages are dominated by taxa resistant
to anthropogenic disturbances (sensu Macedo et al., 2016; Silva et al.,
2017), exhibiting lower complexity and resilience (Liao et al., 2012;
Zhang et al., 2010). It is assumed that dam decommissioning and
subsequent return to natural water level fluctuations will shift macro-
invertebrate assemblages, structurally and functionally, to character-
istics similar to those occurring in a non-regulated lake in the same
basin. Therefore, this reinforces the idea that dam decommissioning can
probably be considered as a good option for restoring natural condi-
tions in this type of basin, as has been argued by others (Bednarek,
2001; Dynesius and Nilsson, 1994; Van Looy et al., 2014).

Our results should be analyzed carefully. Due to the limitations of a
two-site study, their capacity for inferences in larger scales is compro-
mised. It does fit our objectives, however, by focusing in the regulated
lake and the effects caused by the dam in this unique ecosystem.

5. Conclusions

Eco-exergy and functional groups were more sensitive to differences
in lake-level fluctuation than taxonomic richness, diversity, or specific
eco-exergy; therefore, we recommend their use in other bioassessments
employing macroinvertebrates as lentic ecological indicators.

We recommend the elimination of Pandeiros dam, which will allow
restoring natural water movements, organic matter dynamics, and en-
ergy flows in this ecosystem of special biological importance and un-
ique for the conservation of freshwater biodiversity in the neotropics. If
the Pandeiros Dam is removed, our study will be part of the first
comprehensive BACI (before-after-control-impact) study of dam re-
moval in South America; therefore, it will be important to track the
multiple ecological changes after removal.
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