Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates

Luz Boyero1,2,4, Richard G. Pearson3, David Dudgeon1, Verónica Ferreira4, Manuel A. S. Graça1, Mark O. Gessner5,6†‡, Andrew J. Boulton7, Eric Chauvet8, Catherine M. Yule8, Ricardo J. Albariño9,11, Alonso Ramírez12, Julie E. Helsen9,13, Marcos Callisto14, Muthukumarasamy Arunachalam15, Julián Chará16,17, Ricardo Figueroa18, Jude M. Mathooko19, José F. Gonçalves Jr14,20, Marcelo S. Moretti14,9, Ana Marcela Chará-Serna16,20, Judy N. Davies7, Andrea Encalada4,21, Sylvain Lamothé8,9, Leonardo M. Buria10, José Castela1, Aydeé Cornejo22,23, Aggie O. Y. Li3, Charles M’Erimba20, Verónica Díaz Villanueva11, María del Carmen Zúñiga16, Christopher M. Swan24 and Leon A. Barmuta25

ABSTRACT

Aim We tested the hypothesis that shredder detritivores, a key trophic guild in stream ecosystems, are more diverse at higher latitudes, which has important ecological implications in the face of potential biodiversity losses that are expected as a result of climate change. We also explored the dependence of local shredder diversity on the regional species pool across latitudes, and examined the influence of environmental factors on shredder diversity.

Location World-wide (156 sites from 17 regions located in all inhabited continents at latitudes ranging from 67° N to 41° S).

Methods We used linear regression to examine the latitudinal variation in shredder diversity at different spatial scales: alpha (α), gamma (γ) and beta (β) diversity. We also explored the effect of γ-diversity on α-diversity across latitudes with regression analysis, and the possible influence of local environmental factors on shredder diversity with simple correlations.

Results Alpha diversity increased with latitude, while γ- and β-diversity showed no clear latitudinal pattern. Temperate sites showed a linear relationship between γ- and α-diversity; in contrast, tropical sites showed evidence of local species saturation, which may explain why the latitudinal gradient in α-diversity is not accompanied by a gradient in γ-diversity. Alpha diversity was related to several local habitat characteristics, while γ- and β-diversity were not related to any of the environmental factors measured.

Main conclusions Our results indicate that global patterns of shredder diversity are complex and depend on spatial scale. However, we can draw several conclusions that have important ecological implications. Alpha diversity is limited at tropical sites by local factors, implying a higher risk of loss of key species or the whole shredder guild (the latter implying the loss of trophic diversity). Even if regional species pools are not particularly species poor in the tropics, colonization from adjacent sites may be limited. Moreover, many shredder species belong to cool-adapted taxa that may be close to their thermal maxima in the tropics, which makes them more vulnerable to climate warming. Our results suggest that tropical streams require specific scientific attention and conservation efforts to prevent loss of shredder biodiversity and serious alteration of ecosystem processes.

Keywords Detritus, diversity, guild, latitudinal gradient, leaf litter, shredders, species richness, stream ecosystems, trophic diversity.

*Correspondence: Luz Boyero, Wetland Ecology Department, Doñana Biological Station-CSIC, Avda America Vespucio s/n, 41092 Sevilla, Spain. E-mail: luz.boyero@ebd.csic.es
†Present address: Department of Stratified Lakes, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775 Stechlin, Germany.
‡Present address: Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587 Berlin, Germany.
§Present address: Laboratório de Limnologia, Departamento de Ecologia, IB, Universidade de Brasília, CEP 70910-900, Brasília, DF, Brazil.
INTRODUCTION

Ecologists have long been interested in global patterns of biodiversity because they seek to explain the general increase in species richness from the poles to the tropics. Numerous explanations for this gradient have been proposed (e.g. Willig et al., 2003; Mittelbach et al., 2007), and it has been demonstrated that such explanations need to consider the relationship between local and regional diversity. This relationship is not necessarily linear (Caley & Schluter, 1997), as there may be a limit to the number of species that can be supported at a particular site (saturation), but different species assemblages may be found at different sites, thereby leading to higher regional diversity (e.g. Sale, 1977).

Hillebrand (2004) showed that diversity gradients are consistent across most taxa, habitats and spatial scales. However, his meta-analysis was based on species presence–absence data, which are insufficient for investigating ecological processes in which relative abundance of species play a major role (Dangles & Malmqvist, 2004). Also of great ecological significance can be the number of species within particular guilds or trophic levels (Gessner et al., 2010). When species richness within a given trophic level is low, losing one or more species is likely to have particularly severe consequences at the ecosystem level (Duffy, 2009; Dudgeon & Gao, 2010). This is because the chances of different species being functionally redundant (i.e. having similar effects on ecosystem processes) are lower with low diversity, and thus the loss of key species (Mills et al., 1993) is more likely. Moreover, the risk of losing an entire trophic level increases with decreasing species richness, potentially leading to a major reduction in trophic diversity (Hillebrand & Mattheisen, 2009). Reducing the number of trophic levels within an ecosystem strongly affects ecosystem functioning by constraining ecosystem processes (e.g. organic matter decomposition or primary production) and changing the magnitude and efficiency of trophic transfer (Duffy et al., 2007).

Gradients of diversity within guilds or trophic levels are, however, virtually unknown. Here we explore global diversity patterns in stream shredders, a key detritivore guild in forest streams, where terrestrially derived detritus is the major energy and carbon source (Wallace et al., 1997). Shredders are able to assimilate carbon and other nutrients from this dead organic matter and associated microbes, and to convert a portion of it to animal tissue; they increase the rate at which coarse detritus is transformed into fine detritus; promote food availability for collectors and filter feeders; and thus play a fundamental role in organic matter decomposition and nutrient cycling (Cummins et al., 1973; Short & Maslin, 1977; Wallace et al., 1982; Wallace & Webster, 1996; Graça, 2001; Hieber & Gessner, 2002). Although shredders belong to the same trophic level as other detritivores, they occupy a different position in the detritus processing chain, as they specialize in the primary processing of whole leaves rather than depending on processed, fragmented detritus (Heard, 1994).

Various local studies suggest that shredder diversity may be greater in temperate regions (see Boyero et al., 2009). This would imply that tropical streams might be more vulnerable to the loss of key species, or of the entire shredder guild to which shredders importantly contribute, with important consequences for ecosystem functioning. Furthermore, climate warming might be expected to exacerbate this effect, as most shredders belong to cool-adapted taxa and are possibly at the margin of their upper temperature tolerance in the tropics (Dillon et al., 2010). Studies of shredder diversity over broad spatial scales are, however, lacking, and global studies have shown that different stream taxa can exhibit different diversity patterns at both the local and regional scales (Vinson & Hawkins, 2003; Pearson & Boyero, 2009). Strong relationships between regional and local species richness have been demonstrated in Finland (Heino et al., 2003) and Australia (Marchant et al., 2006), suggesting that assemblages are unsaturated and indicating the importance of large-scale processes, but not denying the possible influence of local factors (e.g. water chemistry) on the regional diversity.

We examined shredder diversity across latitudes at a global scale (156 sites from 17 regions located in all inhabited continents at latitudes ranging from 67° N to 41° S). Given the scale dependence of estimates of diversity (Gaston, 2000; Rahbek, 2005), and bearing in mind that local processes and relationships can be of great importance in determining species richness (Heino, 2009), we examined shredder species richness at both the local and regional scales (α- and γ-diversity, respectively), as well as the change in assemblage composition among sites within regions (β-diversity). We hypothesized that shredder diversity would increase with latitude, on the basis of local studies reporting low numbers of shredder species in tropical streams (Boyero et al., 2009). We also explored the dependence of α-diversity on the regional species pool (i.e. γ-diversity) across latitudes, hypothesizing that the relationship would be positive, although we had no a priori expectation regarding the shape of such a relationship. Finally, given that in a global study of this type local factors might mask any general relationships, we examined the influence of local environmental factors on shredder diversity.

MATERIALS AND METHODS

Field and laboratory work

We sampled shredders and their food resources (leaf litter) at 117 sites from a total of 13 regions, in Africa (one region), Asia (three regions), Australia (one region), Central America (two regions), Europe (two regions) and South America (four regions) (Table 1, Fig. 1), using the same methodology. The surveys were conducted between 2006 and 2007, during periods when leaf litter was present in the stream, and within a short period of time in each region to minimize intra-regional seasonal effects. In each region we sampled nine sites, each located in a different headwater stream with no notable human impact. Stream width was ≤ 10 m and site length was approximately 10 times the stream width (50–100 m).
At each site, we generally took 10 leaf litter samples, half from pools and half from riffles, from within areas of 20 × 20 cm in a litter layer of no more than 4 cm, using a net with a 0.5-mm mesh, and transferred them to labelled Ziplock plastic bags. Samples were kept cool and rapidly transported to the laboratory, where they were rinsed and carefully inspected. All macroinvertebrates retained on a 250-μm screen were removed and preserved in 70% ethanol. The number of plant species in leaf litter samples was estimated by visually distinguishing morphospecies (local botanists were consulted when necessary), and leaf litter was then dried to constant weight (60–80 °C for at least 48 h) and weighed. Invertebrates were separated into morphospecies (identified to species when possible), counted and classified as shredders or non-shredders based on gut content analysis following Cheshire et al. (2005). We assumed that congeneric species found in different regions belonged to different species.

At each site, we recorded the latitude (degrees from the equator) and altitude (m a.s.l.) with a GPS. When possible, we measured water temperature (°C), conductivity (μS cm⁻¹), dissolved oxygen saturation (%), pH, alkalinity (mg CaCO₃ l⁻¹), total nitrogen (mg l⁻¹), total phosphorus (mg l⁻¹), wetted stream width (mean derived from six cross sections) and water depth (cm; measured every 0.5 m across the cross sections). We also visually estimated the percentage of substrate covered by leaf litter, the percentage of pool habitat, the percentage of canopy cover and the number of riparian tree species. Finally, we used 1:50,000 maps to estimate catchment area (km²) and the percentage of native forest in the catchments.

Table 1

<table>
<thead>
<tr>
<th>Region</th>
<th>Acronym of region</th>
<th>Latitude</th>
<th>Altitude (m a.s.l.)</th>
<th>Observed γ</th>
<th>Estimated γ</th>
<th>Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina (Nahuel Huapi National Park)</td>
<td>ARG</td>
<td>40.46–41.25°S</td>
<td>795–1465</td>
<td>11</td>
<td>12.8</td>
<td>86</td>
</tr>
<tr>
<td>Brazil (Minas Gerais)</td>
<td>BRL</td>
<td>18.05–20.50°S</td>
<td>740–1320</td>
<td>3</td>
<td>3.0</td>
<td>100</td>
</tr>
<tr>
<td>Colombia (western Andean region)</td>
<td>COL</td>
<td>04.71–04.89°N</td>
<td>950–2560</td>
<td>12</td>
<td>12.0</td>
<td>100</td>
</tr>
<tr>
<td>Costa Rica (La Selva Biological Station)</td>
<td>CRA</td>
<td>10.41–10.44°N</td>
<td>30–100</td>
<td>2</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>Ecuador (montane Andean forest)</td>
<td>ECD</td>
<td>00.09–00.13°S</td>
<td>1167–1380</td>
<td>14</td>
<td>17.6</td>
<td>80</td>
</tr>
<tr>
<td>France (Montagne Noire)</td>
<td>FRN</td>
<td>43.39–43.49°N</td>
<td>320–1107</td>
<td>10</td>
<td>10.0</td>
<td>100</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>HKN</td>
<td>22.28–22.44°N</td>
<td>70–370</td>
<td>8</td>
<td>8.9</td>
<td>90</td>
</tr>
<tr>
<td>India (southern Western Ghats)</td>
<td>IND</td>
<td>08.01–10.50°N</td>
<td>225–450</td>
<td>7</td>
<td>7.9</td>
<td>89</td>
</tr>
<tr>
<td>Kenya (various regions)</td>
<td>KEN</td>
<td>00.02–00.37°S</td>
<td>1713–2296</td>
<td>2</td>
<td>2.9</td>
<td>69</td>
</tr>
<tr>
<td>Malaysia (various regions)</td>
<td>MLY</td>
<td>00.03–04.42°N</td>
<td>55–1993</td>
<td>22</td>
<td>24.3</td>
<td>91</td>
</tr>
<tr>
<td>Panama (Campana and Soberanía National Parks)</td>
<td>PAN</td>
<td>08.68–09.17°N</td>
<td>74–666</td>
<td>2</td>
<td>2.0</td>
<td>100</td>
</tr>
<tr>
<td>Portugal (Lousã and Caramulo Mountains)</td>
<td>PTG</td>
<td>40.07–40.60°N</td>
<td>113–814</td>
<td>14</td>
<td>17.6</td>
<td>80</td>
</tr>
<tr>
<td>Queensland (Australian wet tropics)</td>
<td>QLD</td>
<td>17.15–19.00°S</td>
<td>40–880</td>
<td>15</td>
<td>17.7</td>
<td>85</td>
</tr>
<tr>
<td>Additional regions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile (Bio Bio region)</td>
<td>CHL</td>
<td>36.88–38.00°S</td>
<td>18–878</td>
<td>3</td>
<td>4.6</td>
<td>65</td>
</tr>
<tr>
<td>Maryland (Appalachian Plateau)</td>
<td>MLD</td>
<td>39.36–39.71°N</td>
<td>483–842</td>
<td>13</td>
<td>14.6</td>
<td>89</td>
</tr>
<tr>
<td>New South Wales (Coffs Harbour Hinterland)</td>
<td>NSW</td>
<td>30.23–30.45°S</td>
<td>33–1560</td>
<td>10</td>
<td>14.2</td>
<td>70</td>
</tr>
<tr>
<td>Sweden (Norrland)</td>
<td>SWD</td>
<td>61.17–66.90°N</td>
<td>25–437</td>
<td>18</td>
<td>24.2</td>
<td>74</td>
</tr>
</tbody>
</table>

Figure 1 Location of study regions (acronyms in Table 1). Additional temperate regions are indicated in parentheses (see text and Table 1 for details).
Because of the relatively small number of high-latitude sites surveyed, we compiled four additional data sets from temperate regions, to check for consistency with the patterns observed in our survey. Two of these regions conformed to the present global study (sampling methods described above) but were not included in the main data set because of the small number of sites surveyed: Chile (five sites) and New South Wales (Australia; six sites). Data from Maryland (USA) were taken from nine sites randomly selected from 84 described by Swan et al. (2009) and data from Sweden were taken from nine sites randomly selected from 23 described by Jonsson et al. (2001).

Statistical analyses

We evaluated shredder diversity as the number of species at each site (\(\alpha\)), the total number of species in each region (\(\gamma\)) and the change in assemblage composition among sites within regions (\(\beta = \gamma_0 + \alpha_m(n - 1)/n\), where \(\gamma_0\) is the observed number of species in each region and \(n\) is the number of sites sampled in each region; Palmer, 1990) in the pc-ORD package (McCune & Mefford, 2006), to be used in further analysis and to assess the efficiency of our survey.

Variation in shredder diversity (\(\alpha\), \(\gamma\) and \(\beta\)) with latitude was explored by linear regression. As altitude was variable among regions, we removed its effect by using the residuals of the regression altitude versus latitude in the analyses, rather than latitude itself. We also examined the relationship between \(\gamma\) and \(\alpha\)-diversity by linear regression. The mean \(\alpha\) for each region (\(\alpha_m\)) was used in this analysis to avoid pseudoreplication (Soininen et al., 2009). We examined the data for curvilinearity or a decreasing slope by including a quadratic term in the regression, as an indication of \(\alpha_m\) approaching some limit that would suggest species saturation (see Shurin et al., 2000). Akaike’s information criterion (AIC) was used to select the model that best fitted the data; it was calculated using the formula AIC = \(n \times \ln (\text{RSS}/n) + 2K\), where \(n\) is sample size, RSS is the residual sum of squares and \(K\) is the number of parameters in the model. We sought differences in species saturation between temperate and tropical zones (defined here as \(\gamma = 9.38 \pm 1.71\) SE). The four additional temperate regions had 44 morphospecies in total, with 0–9 species per site (\(\alpha = 4.66 \pm 0.49\) SE) and 3–18 species per region (\(\gamma = 11.00 \pm 3.14\) SE). Jackknife estimates suggested that we recorded on average 90% (\(\pm 3\)% SE) of the species present in each region at the time of sampling, or 86% (\(\pm 3\)% SE) when additional sites were included (Table 1).

RESULTS

We found a total of 122 shredder morphospecies in the 13 main regions, with 0–10 species per site (\(\alpha = 4.61 \pm 0.26\) SE) and 2–22 species per region (\(\gamma = 9.38 \pm 1.71\) SE). The four additional temperate regions had 44 morphospecies in total, with 0–9 species per site (\(\alpha = 4.66 \pm 0.49\) SE) and 3–18 species per region (\(\gamma = 11.00 \pm 3.14\) SE). Jackknife estimates suggested that we recorded on average 90% (\(\pm 3\)% SE) of the species present in each region at the time of sampling, or 86% (\(\pm 3\)% SE) when additional sites were included (Table 1).

Linear regression showed that \(\alpha\)-diversity increased with latitude (\(\alpha = 4.6 + 0.091 \times \text{latitude}; r^2 = 0.22, P < 0.0001\); Fig. 2a). When the four additional temperate sites were included in the analysis, the relationship was similar (\(\alpha = 4.8 + 0.072 \times \text{latitude}; r^2 = 0.22, P < 0.0001\)). Gamma diversity showed no latitudinal pattern (\(\gamma = 9.5 + 0.029 \times \text{latitude}; r^2 < 0.01, P = 0.83\); Fig. 2b), with a similar outcome when the four additional temperate sites were included (\(\gamma = 11.5 + 0.127 \times \text{latitude}; r^2 = 0.09, P = 0.23\)). The relationship between \(\beta\)-diversity and latitude was not significant (\(\beta = 2.4 - 0.032 \times \text{latitude}; r^2 = 0.16, P = 0.17\); Fig. 2c); variability of \(\beta\)-diversity was higher at lower latitudes, but this apparent pattern disappeared when the four additional temperate sites were included in the analysis (\(\beta = 2.8 - 0.0005 \times \text{latitude}; r^2 < 0.01, P = 0.98\)).

Gamma and \(\alpha\)-diversity were directly related (linear relationship: \(\alpha_m = 1.81 + 0.28 \times \gamma\); quadratic relationship: \(\alpha_m = 2.66 + 0.35 \times \gamma - 0.34 \times (\gamma - 10.7)^2\)). Both relationships were significant (linear: \(P = 0.007\); quadratic: \(P = 0.0001\)), but the quadratic model explained more of the total variance (linear: 54%; quadratic: 89%) and had a smaller AIC (linear: 20.9; quadratic: 10.3). When analysed separately, tropical and temperate zones showed distinct tendencies. For temperate regions, the quadratic model explained slightly more of the variance (linear: 58%; quadratic: 69%), but the linear model had a slightly smaller AIC (linear: 12.5; quadratic: 14.6) (Fig. 3a). For tropical regions, the quadratic model explained more variance (linear: 54%; quadratic: 87%) and had a smaller AIC (linear: 15.2; quadratic: 7.9) (Fig. 3b).

Several local habitat variables were correlated with \(\alpha\)-diversity: water temperature (\(r = -0.53, P < 0.0001\)), water depth (\(r = -0.45, P < 0.0001\)), stream width (\(r = -0.33, P = 0.0003\)) and percentage of substrate covered by leaf litter (\(r = -0.27, P = 0.034\)). Gamma and \(\beta\)-diversity showed no relationship with any of the environmental variables.

DISCUSSION

Our results suggest that global patterns of shredder diversity are complex and depend on spatial scale, as demonstrated for other organisms (Rahbek, 2005). However, we can draw several conclusions that have important ecological implications. Firstly, we have shown that the number of shredder species present at a given site (\(\alpha\)-diversity) increases with latitude, confirming previous suggestions (Boyero et al., 2009). This implies that tropical streams have a higher risk of losing key species or the whole
shredder guild, which may have serious consequences for stream ecosystem functioning, including slowed leaf litter decomposition (Jonsson & Malmqvist, 2000; Boyero et al., 2007, 2011; Dudgeon & Gao, 2010), poor trophic transfer from the main basal resource (leaf litter) to higher trophic levels (Duffy et al., 2007) or disruption of the processing chain (sensu Heard, 1994).

Secondly, we found that the relation between regional and local diversity differed for temperate and tropical regions. For the tropical assemblages only, we found an upper limit to α-diversity, regardless of γ-diversity. This indicates species saturation, which could explain why the latitudinal gradient in α-diversity that we observed was not accompanied by a gradient in γ-diversity. Shredder α-diversity seems to be limited at tropical sites by local factors such as environmental constraints or competitive species interactions (Caley & Schluter, 1997; Heino, 2009). Alpha diversity correlated with several local habitat variables (water depth, channel width, water temperature) that

Figure 2 Linear regressions showing latitudinal variation in (a) alpha (b) gamma and (c) beta diversity ($\beta = \gamma \alpha_m, \alpha_m$ being the mean α-diversity for each region) of shredders. To normalize for altitudinal effects, the residuals of the regression altitude versus latitude were used as predictor variable instead of latitude. Dashed regression lines: $P > 0.05$.

Figure 3 Linear and quadratic models exploring the relationship between regional diversity and the mean alpha diversity for each region in (a) temperate and (b) tropical regions. Because of the lower number of temperate than tropical regions surveyed, four additional temperate regions [Chile, New South Wales (Australia), Maryland (USA) and Sweden] are included in (a) (see text for details). For temperate regions, the quadratic model explained slightly more of the variance, but the linear model had a slightly smaller AIC (linear: 12.5; quadratic: 14.6). For tropical regions, quadratic model explained more variance and had a smaller AIC (linear: 15.2; quadratic: 7.9).
relate to position in river networks and reflect the expected
distributional pattern, with shredders being most prevalent in
small streams (Vannote et al., 1980). High temperatures might
limit the presence of certain shredder taxa at tropical lowland
sites (Camacho et al., 2009; Yule et al., 2009) because many of
them have evolved in cool waters (Fochetti & Tierno de
Figueroa, 2008; de Moor & Ivanov, 2008). However, the lack of a
clear relationship between shredder diversity and most environ-
mental factors is likely to reflect the importance of multiple
factors operating simultaneously at local scales and that are
difficult to pinpoint given the broad spatial extent of the present
study.

A potential local limiting factor of α-diversity at tropical sites
is the existence of strong competitive interactions. This is pos-
ible, for example, if resources are limited in terms of the
amount, quality and timing of leaf litter inputs. Even though
seasonality exists in the tropics, the temporal pattern of leaf fall
is much more even than in the temperate zone, lacking the
highly pulsed and temporally predictable inputs typical of tem-
perate streams (Cummins, 1974). As a result, leaf litter tends to
be more abundant in temperate streams at a particular time of
the year, and thus may allow a greater number of shredder
species to coexist. Moreover, the leaves of many tropical plants
contain high levels of deterrents (Coley & Barone, 1996; Coq
et al., 2010; Graça & Cressa, 2010), so palatable leaves are often a
scarce resource, notwithstanding that some tropical trees
produce high-quality leaves as well (Graça et al., 2001). Thus,
tropical streams tend to have less leaf litter of good quality
available at any particular time than temperate streams, exacer-
bating competitive interactions among shredder species
(Bastian et al., 2008). Different shredder species show prefer-
ces for leaves of the same plant species (Graça et al., 2001;
Bastian et al., 2007), and competition is an important mecha-
nism regulating the consumption of leaf litter by shredders
(Bastian et al., 2008). Competitively dominant species feed on
the preferred leaves, while other species are forced to feed on
other, less palatable, leaves, which may affect their growth and
reproductive success (Bastian et al., 2008; Gessner et al., 2010).
Competition for a scarce resource could then limit the number
of shredder species coexisting at tropical sites.

Another potential explanation for the curvilinear relationship
between regional and local species richness in the tropics is
limitation for dispersal among sites. This could be due to the
existence of more effective geographical barriers (which is
unlikely) or to a lower dispersal ability of tropical shredders. Most
temperate shredders are larvae of insect taxa (e.g. caddisflies,
stoneflies) with flying adult stages. Although the dispersal ability
of adult caddisflies and stoneflies is often limited (Kovats et al.,
1996; Griffith et al., 1998), it is higher than that of other shredder
taxa such as crustaceans and molluscs, which lack flying stages
altogether. The latter taxa are better represented in the tropics,
where they comprised 15% of all shredder species collected in our
survey, compared with only 6% in temperate regions. Conse-
sequently, although the effect is unlikely to be large, dispersal
limitation might have contributed to the greater regional satu-
ration tendency we observed for shredders in the tropics.

Our global-scale study indicates that loss of shredder species
might be more critical at tropical sites, where fewer shredder
species are present and the loss of key species or the whole
shredder guild is therefore more likely. The lack of a latitudinal
trend in γ-diversity that we observed suggests that, counter to
common perceptions, diversity of regional shredder species
pools is similar across latitudes. Local extinctions of shredder
taxa, for example in response to climate warming, might there-
fore be compensated by colonization of other species from
regional species pools that were not locally present before. This
would be more likely if the colonizers were previously absent
because they were competitively inferior to the species that went
locally extinct. However, limited dispersal ability of shredders
lacking an adult flying stage, including some taxa typical of
tropical streams, suggests that colonization from adjacent sites
following local extinctions may not be the norm. Furthermore,
many shredder taxa belong to mostly cool-adapted taxa, and
may be close to their thermal maxima in the tropics, where
predicted extinctions from climate warming may have dispro-
portionately greater effects (Dillon et al., 2010). Given their
limited local diversity, tropical shredder assemblages would thus
merit special scientific attention and conservation effort, to
determine or create refugia to prevent species losses and conse-
quent alteration of stream ecosystem functioning.

ACKNOWLEDGEMENTS

The study was supported by a grant from the National Geo-
graphic Society’s Committee for Research and Exploration
(grant number 7980-06 to Luz Boyero) and various national
funding sources. C. Canhoto, Z. Dewson, G. Cabarcas, M.
Dunfee, B. Gao, Y. González, M. Hirose, P. Lisle, N. Mochizuki,
D. Nawa, L. C. Y. Ng, P. Rosa, R. Sánchez-Argüello and K.
Schmidt assisted with field work. J. Hortal provided statistical
advice. We thank M. Jonsson, who provided latitudes for the
Swedish sites, and the Maryland Department of Natural
Resources Monitoring and Non-tidal Assessment Division for
the provision of data.

REFERENCES

Baselga, A. (2010) Partitioning the turnover and nestedness
components of beta diversity. Global Ecology and Biogeogra-
phy, 19, 134–143.

preferences by shredders in tropical streams. Journal of Tropi-

sity loss on ecosystem function across trophic levels and eco-
systems: a test in a detritus-based tropical food web. Austral
Ecology, 33, 301–306.

diversity influences ecosystem function: a test with a tropical

tropical streams really different? Journal of the North American
Benthological Society, 28, 397–403.

BIOSKETCH

Luz Boyero is a Senior Research Fellow (Ramón y Cajal Program) at the Doñana Biological Station-CSIC, Spain, and an Adjunct Principal Research Fellow at James Cook University, Australia. Her research focuses on stream ecology with special interest in global patterns of biodiversity and ecosystem functioning (particularly latitudinal gradients), and the ecology of detritus-based stream food webs. Since 2006 she has been leading the global team that conducted the present study. Author contributions: L.B. and R.G.P. conceived the study; L.B. led the research, data analysis and writing, with important inputs to data analysis and writing from R.G.P., and to writing from D.D., V.F., M.A.S.G. and M.O.G.; and all authors locally coordinated or performed research and/or commented on the manuscript.

Editor: Janne Soininen